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Abstract 

Hyperspectral imaging (HSI) is an emerging analytical tool with flexible 

applications in many different target detection and classification environments, including 

Combat Search and Rescue, Military Intelligence, environmental conservation, and many 

more. Algorithms are being developed at a rapid rate, solving various related 

classification and detection problems under certain assumptions. At the core of these 

algorithms is the concept of supervised pattern classification, which trains an algorithm to 

data with enough generalizability that it can be applied to multiple instances of data. It is 

necessary to develop a logical methodology that can weigh attributes and responses and 

provide the analyst an output value that can help determine which algorithm should be 

used in a specific situation. This research focuses on the comparison of the overall quality 

of supervised learning classification algorithms (including Naive Bayes, Classification 

Trees, and Quadratic Discriminant) through the development, use, and analysis of a value 

focused thinking (VFT) hierarchy. This hierarchy represents a fusion of qualitative and 

quantitative parameter values developed with the use of elicited Subject Matter Expert a 

priori information. Parameters include a fusion of bias/variance values decomposed from 

both quadratic and zero/one loss functions, as well as a comparison of cross-validation 

methodologies and resulting generalization error. This methodology is then utilized to 

compare the aforementioned classifiers as applied to hyperspectral imaging data. The 

conclusions reached include a proof of concept of the credibility and applicability of the 

value focused thinking process to decisions for use of algorithm for different objectives. 
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VALUE FOCUSED THINKING APPLICATION TO SUPERVISED PATTERN 
CLASSIFICATION WITH EXTENSIONS TO HYPERSPECTRAL ANOMALY 

DETECTION ALGORITHMS 
 
 

I. Introduction 

Background 

 The No Free Lunch Theorem states that a comparison of classifiers for a classification 

task is largely dependent on the task at hand. Wolpert and Macready formalized this as  

All algorithms that search for an extremum of a cost function perform exactly the same, 
when averaged over all possible cost functions. In particular, if algorithm A outperforms 
algorithm B on some cost functions, then loosely speaking there must exist exactly as 
many other functions where B outperforms A (Wolpert and Macready, 1995).  
 

A classifier that works in one case may outperform another classifier, but the other may 

outperform it in another case. Therefore, there are many factors and responses that go into 

determining which classifier is best in certain situations. Even if an optimal classifier did exist, it 

would be almost impossible to prove such a fact, as it would necessitate a vast amount of real-

world data with many different characteristics to prove its optimality. Dimitris Manolakis states 

in his paper Is There a Best Hyperspectral Detection Algorithm?,  

Our main conclusion is that if we take into account important aspects of real-world 
hyperspectral imaging problems, proper use of simple detectors, like the matched filter 
and adaptive-cosine estimators, may provide acceptable performance for practically 
relevant applications. Are we certain that an undiscovered optimal detector does not 
exist? Probably not. However, even if such a detector were found, we may never have 
sufficient data to prove its superiority (Manolakis et al., 2009).  
 

This task always necessitates an expert analyst stay in the loop to make any tactical decisions 

depending on the type of classification task that arises in the particular situation.  

 For this reason, in the Air Force, when analysts are observing remote sensing data in 

order to provide a decision maker the information that they need to make important real time 

decisions, they must fully understand the information that is given to them and must also have a 
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way to weigh different methodologies that infer information out of the data that they have. 

Specifically, when assessing hyperspectral imaging data collected from remote sensors aimed at 

an operational scene in order to detect targets of interest, the analyst must understand which tool 

will give them the best results amongst a plethora of different objectives and criteria. This 

situation naturally leads to the idea and use of Value Focused Thinking (VFT) or Multi-

Objective Decision Analysis (MODA) to assess the quality of these different anomaly detectors 

in different situations. 

 Hyperspectral imaging (HSI) analysis is a discipline that allows analysts to collect data 

about the environment that is of their interest in a unique way that takes advantage of all of the 

information that is contained in the Infrared and Visible portions of the Electromagnetic 

Spectrum. Every material that exists in this universe is comprised of a unique spectral fingerprint 

that can be extracted if one knows how to look for it. Much like in the discipline of statistics in 

general, where data is collected in a certain methodological way and then analyzed and tested in 

order to discover an inference about this data that describes the truth of some underlying 

population, HSI allows the collection Electromagnetic (EM) information along the spectral 

dimension (partitioned by wavelength) for the inference of the type of material in each of a 

certain amount of pixels in the spatial dimension of a sensor based on that sensor’s resolution. 

This naturally leads to the use of pattern classification algorithms to detect the classes of these 

materials based on their spectral decomposition, using the EM information that is treated as the 

features, or predictors of these classes. If an initial data collection experiment is conducted, and a 

truth set of information is formed for that specific image, the classification algorithm that is 

being used can be trained in order to optimize the discriminant of the features that can separate 

the targets, or anomalies, from the background data.  
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 There are many issues prevalent when attempting to measure the performance of 

classification algorithms and many competing responses that can be used in order to train the 

algorithm to detect the certain targets of interest.  The quality of any type of methodology is a 

difficult concept to define. Robert Pirsig states in his book, Zen and the Art of Motorcycle 

Maintenance,   

’What's new?’ is an interesting and broadening eternal question, but one which, if 
pursued exclusively, results only in an endless parade of trivia and fashion, the silt of 
tomorrow. I would like, instead, to be concerned with the question ‘What is best?,’ a 
question which cuts deeply rather than broadly, a question whose answers tend to move 
the silt downstream (Pirsig, 1974).  
 

To know the methodology that is truly best helps improve knowledge and thus allows the 

creation of new methodologies in an improved direction that will provide the most utility.  

One issue belonging to the question of “what is best?” is the contextual information that 

is present within the scene that is being sensed. What types of targets are of interest? To what 

degree do they blend in with the surrounding background pixels? Are there different targets that 

are of interest that can be detected and separated from the background that need to be assessed 

and weighted per their importance and criticality? How alike is the current image that is being 

analyzed and the other images that will be analyzed in the future, and can our classification 

algorithm be trained robustly enough to account for these differences and still provide the analyst 

the information that is needed to make the right inferences? How difficult are the algorithms to 

create, manipulate, use and maintain and can the average analyst use them in every situation or 

does there need to be a Subject Matter Expert (SME) in the loop to help conduct these tasks? 

How long does it take the algorithm to make a correct classification and does this length of time 

match up appropriately to the operational situation that it is being used in? It is clear that there is 
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a lot of information to think about and a lot of questions to be asked in order to make the right 

decision to which algorithm is most beneficial.  

 Value Focused Thinking (VFT) is used in order to analyze a space of many competing 

objectives, which is the situation that occurs in HSI Anomaly Detection, and it weighs each 

competing objective appropriately based on the sets of measurements and values that are 

inherent to those objectives. This allows the influx of prior information from decision makers 

(DMs) and subject matter experts (SMEs) that can update our state of information for the 

particular situation’s requirements. Without this addition of SME input, the comparisons that are 

made will be based on frequentist assumptions of probability and likelihood, which assumes that 

only the data collected in the experiment, along with the assumptions of asymptotic normality, 

can be used to make a decision for which of the alternatives are better in that case. This can be 

flawed as in some cases, some of these measures will be valued higher than in other cases, and 

the overall decision that would be made based on expected values will not apply to every single 

case as a whole. Using a hierarchical Value Focused Thinking approach allows us to focus on the 

values that are important to us in that specific situation so we can collect useful actionable 

information that can be used to form and assist important decisions in a wartime environment. 

This research effort is a development of a VFT framework in the context of an HSI anomaly 

detection data collection and decision making effort using different classifiers as our alternatives.  

Methodology 

 There is an inherent lack of formalism in the literature for deciding upon which algorithm 

is most useful for classification in which situation. Due to this vacuum of knowledge, a study can 

be conducted on a small scale of situations that can lend information about which of a set of 

algorithms should be used in that situation, along with the opinions of the Decision Maker. This 
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is akin to the situation of when a certain weapon must be used in theater to deter a particular 

threat. Not every weapon is equal in every situation, and a de facto analysis must be conducted in 

order to assess the validity of that weapon in that situation. Viewing HSI data classification as 

one of those weapons, this analytical effort will attempt to set up an organized hierarchical 

comparison using multiple responses, values, and measurements of interest that are formulated 

under the supervision of a typical Subject Matter Expert/Decision Maker in order to make ad hoc 

decisions of which classifier to use in which situation. This will allow the analyst at least a 

blueprint of a methodology that can be manipulated in order to organize all of these responses in 

a logical manner instead of just performing guesswork. 

 In summary, the approach that will be undertaken in this research effort will be 

comprised of a sequence of experiments utilizing various pattern classification techniques for 

two-dimensional and multi-dimensional HSI anomaly detection and analysis. The process is 

illustrated in the following list of steps.  

 Step 1: 

Decide upon and list responses or objective measurements that define the “quality” of the 

HSI Anomaly Detection Algorithm. These responses are broken into three areas; the first area 

considers the computational effort required to use the algorithm, which can be thought of as the 

user’s satisfaction or dissatisfaction.  The second area is an analysis of the confusion matrix, 

which represents how well the classifier is labeling data points as targets or backgrounds after it 

has been sufficiently trained. The third area is an analysis of the training and validation 

performance of the algorithm, in terms of how it performs when subjected to various training and 

testing data sets.  
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Step 2:  

Values for responses will be entered into a VFT hierarchy which is internally weighed 

and assessed using the input from the SMEs and DMs. This VFT analysis will provide a single 

value for the quality of the algorithm in light of the fusion of both statistically and subjectively 

garnered information across all performance measurements.  

Step 3:  

The single value computed and recorded from the VFT Hierarchy will be compared with 

the results of each individual performance measurement. This will be an empirical verification of 

the differences in the recommendations of the hierarchy over the individual measurements. This 

could provide both additional inferences about the algorithms as well as an assessment of the 

different methodologies of performing algorithm analysis and comparison.  

 Step 4:  

Post-processing will be done by first analyzing the hierarchy values per significant factor 

levels. Additional processing can be done by weighting the hierarchical values by the percentage 

of pixels in the image to simulate the weighing of the classifiers by operational scenario.  

 

For the first step, two multivariate normal distributions will be randomly generated 

representing a background class and a target class. Different supervised learning classification 

algorithms will be utilized to assess the effects of various factors on the classification behavior 

and performance, and in turn, this will allow us a transparent view at how the VFT hierarchy is 

performing. All reasonable permutations of factors will be used to develop a multitude of unique 

combinations. These combinations are considered different unique images for this first 

experimental stage. The factors that are in play include the type of classification algorithm, the 
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Mahalanobis distance between the centroids of the two distributions, the covariance matrices of 

distributions, and the percentage of target pixels to overall pixels. The following is the table of 

factors and their levels.   

Table 1. - Classification Algorithms 

 
 

Table 2. - Data Experiment Factors 

 
 

Each individual factor is a representation of what is most likely to occur in a basic imaging 

anomaly detection problem.  After each VFT Hierarchy value is collected, a post-processing 

adjustment for this value will be computed by weighing the number of target pixels in the image. 

This will allow the weighing mechanism to account for changes in the quality of the algorithm 

due to the unique scenario that it is being used for. In actuality, there is a large difference in 

using an algorithm in passive, non-time sensitive situations, such as analyzing crop distributions 

in a field, and those of more active and urgent situations, such as those found in Search and 

Rescue and Military settings.  

The responses that will be generated and input into a VFT hierarchy include a 

measurement for computational complexity in terms of the difficulty to perform this basic task, 
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and the computational time that it takes to perform the task. The second response will be a 

selection of the False Positive Fraction (FPF) and True Positive Fraction (TPF) that would 

typically be seen in a Response Operator Characteristic curve (ROC), these same values but in 

terms of a Specificity and Sensitivity framework, or these values under an Error and Accuracy 

framework. This allows the analyst to choose a framework to work under in order to reduce any 

ambiguity in the decision chain from analyst to Decision Maker. In this research, the TPF and 

FPF values will be used. The third component will be comprised of error under the framework of 

Cross Validation weighed against the framework of Resubstitution Error, as well as the 

Decomposition of the Mean Squared Error (MSE) function for classification utilizing 

bootstrapping to weigh the Bias of the algorithm when calculating TPF and FPF to the Variance 

of the algorithm when computing these same values.  

The second experiment will use these same classification algorithms but with HSI data 

generated from a data collection effort using the simulated Airborne Reflective Emissive 

Spectrometer (ARES) Forest Radiance I and Desert Radiance II data collection experiment 

images developed from the Hyperspectral MASINT Support to Military Operations (HYMSMO) 

program using the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor. Six 

of the HYDICE ARES images in the AFIT Sensor Fusion Library will be used to assess these 

classification algorithms. The same responses will be calculated as in the first experimental effort 

and these responses will be input into the same VFT hierarchy. Similar analysis will be 

conducted using this Hierarchy, with focus being placed on how the VFT changes when the 

algorithms are used for a more complex dataset.  
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Preview 

 Chapter 2 serves as a survey of the background information that is needed to fully 

understand the context and content of this research effort. It will delineate the current knowledge 

that it contained in the literature of HSI Anomaly Detection algorithms as well as the concept 

and application of Value Focused Thinking. This chapter also describes the responses that are of 

interest and the various classification schemes that are analyzed within this research effort. 

Chapter 3 gives insight into the approach of the analysis within the framework of HSI Anomaly 

Detection, Value Focused Thinking, and Experimental Design. It will illustrate the sequential 

nature of the effort that is performed and the comparisons that will be made. The chapter will 

also outline the Value Focused Thinking process and the steps involved to develop the hierarchy, 

develop the value functions, and assess the measurements. Chapter 4 contains the results of the 

analysis that is undertaken to compare the classification algorithms. Any additional insights that 

come to light from these comparisons are contained within this chapter. Chapter 5 details the 

conclusions and inferences that have come about from this research as well as a listing of 

contributions to the field of HSI Anomaly Detection and any suggestions for additional research 

as follow on studies that can be conducted using the results of this analysis.  
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II. Literature Review 

Overview 

The realm of hyperspectral imaging is a burgeoning field that has exploded over the last 

twenty years. The reason for its growth is its universal application in many fields, including 

medicine, law enforcement, military, homeland security, and developing Graphic User Interfaces 

such as Google Earth (Dube, 2009). Many attempts have been made to improve the performance 

of algorithms under the considerations of various assumptions, including non-linearity, non-

independence, and non-normality of the background and target spectrum distributions. Borghys, 

et al. states “HSI anomaly detectors differ in the way the background is characterized and in the 

method used for determining the difference between the current pixel and the background” 

(Borghys et al., 2007). The constraints and difficulties found within this application cause the 

procession and evolution of algorithms to continue at a rapid pace. Many thesis research efforts 

have been focused on improving different algorithms and implementing algorithms in order to 

show incremental improvement. Some of these algorithms include classical, finite-target, and 

mixture-tuned matched filters; Reed-Xiaoli (RX) anomaly detector; orthogonal-subspace, 

adaptive-cosine estimator; and subspace, kernel-matched subspace, and joint subspace detectors. 

Along with these algorithms, there have been various methods developed for data treatment tasks 

such as feature extraction and selection for dimensionality reduction, background-clutter 

modeling, end-member selection, and radiance-versus-reflectance domain processing (Manolakis 

et al., 2009). Table 3 highlights a selection of references that are found within the HSI domain 

for common types of algorithms and types of data treatment tasks.  
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Table 3. - Hyperspectral Research Resources 

 
 

Due to the rapid expansion of knowledge in this field, it is a necessary to create a 

methodological framework to balance the values that are utilized when comparing these 
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algorithms. Each individual algorithm must be compared to other algorithms under the same 

assumptions, as it is a difficult task to enumerate each assumption and compare each algorithm 

across different levels of reality and mathematical rigor. As Dimitris Manolakis (Manolakis, 

2009) states, “It is both time consuming and difficult for designers of hyperspectral imaging 

systems to navigate through the existing literature to choose a detector or decide if a certain level 

of performance can be expected” (Manolakis et al., 2009). The following few pages represent an 

elicitation of  knowledge for various subjects across the algorithmic and response variable 

domains in order to create a representation of topics that are relevant to creating a logical 

framework for comparison. These include overviews of the HSI domain, Value Focused 

Thinking, Supervised Learning algorithms, the Bias-Variance tradeoff, and the Confusion 

Matrix.   

Hyperspectral Data Analysis Algorithms 

Figure 1 outlines the basic tasks that are found in HSI image analysis.  There are three 

main classes of algorithms that have been developed, each for different aims of utilizing the 

information that is collected from the HSI imaging sensor. The first, Target Detection, is what 

this research effort is concerned with. Target detection is the classification of pixels within an 

image as either target or background pixels. Target detection algorithms can be characterized in 

two separate groups, including Spectral Anomaly Detection Algorithms and Spectral Matching 

Detection Algorithms. Anomaly Detection Algorithms do not need the a priori spectral 

signatures of the target pixels to work. When comparing the pixel with either the local or global 

background, any pixel that does not have the same spectral composition is declared a target. 

While this is a desirable property, it is limited by the fact that it cannot separate anomalies that 

are man-made, natural, or targets of interest. Atmospheric compensation is not a necessary piece 
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of information that is required for anomaly detection. It is the aim of the algorithm to draw a 

discriminating boundary that can separate the target pixels and background pixels. This means 

that the task is a binary classification task, with the two classes being target and background. The 

other type of detection algorithm is the spectral matching algorithm which does need a priori 

information about the target of interest in order to distinguish whether it is present in the scene. 

Pixels are measured in terms of how correlated their spectrums are with known target spectrums. 

These known spectrums for the targets can either be taken from truth libraries or from other 

pixels where the targets are identified (Manolakis et al., 2009).  

The two other types of algorithms are Change Detection and Classification. Change 

Detection is the analysis of HSI data in the spatial and temporal domains in order to detect 

whether and how a scene changes over those two dimensions. This allows for the observation of 

movement, which is especially important in military applications, when subjects of interest could 

be attempting to camouflage their movement to avoid detection. Classification is the expansion 

of the Target Detection task into multiple class labels in order to detect and record the difference 

in materials using a dictionary with recorded spectral information for specific materials or using 

pixels in the scene to characterize the spectral information. Shaw states, “Formally, classification 

is the process of assigning a label to an observation (usually a vector of numerical values), 

whereas detection is the process of identifying the existence or occurrence of a condition” (Shaw 

et al., 2002). Each of these three algorithm types can be further split into the domains of dealing 

with pure pixels, where the materials of interest occupy full pixels in the image, and mixed 

pixels, where there are a percentage of different materials in the same pixel (Shaw, 2002).  

Additionally, Dimensionality Reduction and Unmixing are data processing techniques 

that deal with issues in the data. Dimensionality Reduction deals with the idea of the “Curse of 
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Dimensionality”. The “Curse of Dimensionality” is the property that classification tasks become 

increasingly difficult when more and more dimensions, or features, are added into the problem 

(Friedman, 1996). When HSI sensors collect 210 bands of information about the reflectance of 

the materials in a scene, there is a lot of information that can be reduced due to correlations 

between the features. Dimensionality Reduction is the process of removing the excess 

information that increases the computational cost of the analysis while maintaining the amount 

of information that is used to differentiate between the target and the background. Shaw states, 

“Dimensionality reduction leads to significant reductions in computational complexity and also 

reduces the number of pixels required to obtain statistical estimates of a given accuracy”  

(Shaw, 2002). Usually, Dimensionality Reduction is performed using Principal Components 

Analysis. Unmixing is the process of looking at pixels with more than one class of material 

within them and using an estimation of the amount of those materials to aid in the distinction 

between the classes. Unmixing is important for images that do not have spatial resolution high 

enough to perfectly distinguish target from background, which is almost all of the cases when 

collecting images in real-world scenarios. Unmixing will not be approached within this research 

effort.  
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Figure 1. - Spectral Processing Algorithms (Shaw, 2002) 

Collection of Hyperspectral Imaging Data 

 Fingerprinting has been a method of identifying and classifying individuals for many 

years in detective and forensics work. This example of classification has become a cliché in 

media, including in films and television shows. The process is simple and is often 

unaccompanied by any type of statistical algorithm. The only items needed for this type of 

classification are the fingerprints at the scene and a database, or truth set, of fingerprints that they 

can be matched to with some degree of certainty. This matching allows the detective the ability 

to discriminate potential matches that correspond with those unique fingerprints from those who 

have different patterns, and ultimately, result in substantive evidence that can be used to convict 

a person of a crime.  

Hyperspectral imaging is the fingerprinting of the remote sensing and imaging world. 

Instead of unique, literal fingerprints, the methodology is used to perform a type of pattern 

matching using the way that the unique material reflects, absorbs, and emits electromagnetic 

energy that it is exposed to from various sources, including most prevalently, the illumination 
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from the sun. This phenomenon of reflectance, absorbance, or emittance and the translation of it 

into a unique signature that can be analyzed to tell it apart from other materials is captured by 

sensors. These sensors are focused on a scene in order to collect a set of images as if they were a 

stack of playing cards, with each card corresponding to a unique spectral bandwidth in the 

visible, near-infrared (NIR), and mid-infrared (MIR) portions of the electromagnetic spectrum.  

Figure 2 represents the spectral reflectance signatures of green vegetation, soil, and dry 

vegetation within the visible and NIR portions of the spectrum.  

 
Figure 2. - Reflectance Spectrum for Vegetation and Soil (Manolakis, 2003) 

 

Each of these playing cards can also be analyzed and interpreted in the more intuitive 

spatial dimension in order to discern which pixels contain targets or anomalies that may be of 

interest to the analyst and ultimately the warfighter and the decision maker. The analysis of the 

images in the spatial dimension helps to create the truth database that each spectrum has to be 

compared to in order to perform discrimination and detection of each individual pixel.  

The size and representation of the pixels on the ground depend on the spatial resolution 

as well as the collection mechanism of the sensor, with each of these sensors commonly 
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connected to aircraft or satellites making passes over the specific area of interest on the ground. 

Some pixels may represent miles of area and thus contain many materials that mix the spectrums 

of the pixels, making it more difficult to tell materials apart and thus necessitating more 

advanced algorithms with higher computational cost and effort to distinguish each material from 

these mixed pixels. This scenario is analyzed using the Unmixing Algorithms discussed 

previously. Some pixels may represent only small swaths of land of a few square feet in area, 

which contain unique signatures that could represent metal from tanks, skin from individuals, or 

the organic spectrums of trees and shrubs. It is these pixels that are in fact hiding vectors of 

spectral information in the 3rd spectral dimension of what is known as a data cube, which is the 

collection method and data interpretation of choice in HSI analysis. The representation of the 

data cube is seen in the Figure 3. The image on the left is a representation of the cross-section of 

reflectance values in the spectral domain for an individual pixel that will be classified as either a 

target or background. The image on the right is the spatial representation of the image for an 

individual spectral band.  

 
Figure 3. - Representation of HSI Data (Manolakis, 2003) 

 

While the data cube seems like some far-out, new approach to collecting data, it is really 

just a cognitive representation of data that could still be unfolded into the typical data matrix, 
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representing the independent variables, also known as predictors or features in classification 

nomenclature, and the dependent response variable vector format that is common in most fields 

of statistical science.  The pixels only stand in as place-keepers that represent the index number 

of this unfolded matrix format. The response variable in the HSI Anomaly Detection 

methodology is the class of the pixel, often representing a binary 1 or 0, to represent what are 

considered target pixels that are of interest to background pixels that the target pixels must be 

distinguished from. Target/Anomaly Detection algorithms help perform the distinguishing as 

they set up a measurement parameter(s) that can be used to determine whether the pixel is 

considered an anomaly or part of the background. For anomaly detection, spectral information is 

not considered part of the a priori knowledge set for the data, but only information whether the 

pixel represents a target or part of the background. The algorithm then uses a distance 

measurement or a distinguishing measurement between the Pixel Under Test (PUT) and the 

distribution of the background to determine whether the pixel is a target or background pixel 

(Borghys et al., 2012).  

Figure 4 shows a spectral decomposition of soil, water, and vegetation for reflectance 

data in a scene, collected from a sensor on an aircraft. As seen in the figure, each spectrum in the 

Visible and NIR spectrums is significantly different from one another and can be distinguished 

using the appropriate algorithm. For anomaly detection, the background in this situation could be 

represented by any of the soil, water, or vegetation spectrums, while the target would most likely 

be the buildings or roadways in the image. However, these are arbitrary designations based on 

input of the analyst and Decision Maker.  
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Figure 4. - HSI Imaging Collection Process (Dube, 2009) 

Radiance vs. Reflectance  

An important distinction in the collection of HSI data is the difference between Radiance 

and Reflectance data. The sensor observes and digitizes the radiant flux, or radiance, that enters 

the sensor’s aperture. For each ground pixel, the radiance is composed of both the illumination 

that comes directly from the sun’s rays and the amount that the material reflects back into the 

sensor. These can be separated as the radiation reflected from the pixel of interest itself, the 

radiation reflected from the surface surrounding the pixel of interest and scattered in the air, and 

the radiance the occurs due to the photons scattered without ground contact  

(Manolakis et al., 2009). These measurements are different for each individual wavelength.  

Other factors that creep into the equation include the angle of the sun, the viewing angle of the 

sensor, the solar radiance from atmospheric scattering, the illumination from reflected light of 

other materials, shadows in the scene, and atmospheric scattering, along with biases from the 
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sensor (Shaw, 2002). Therefore, pre-processing must be accomplished in order to compare 

apples to apples. Usually, this includes taking the pure radiance data and performing atmospheric 

compensation to determine reflectance data, which is then used in the data processing 

applications and then in the unmixing and detection algorithms. This process is seen in Figure 5.  

 
Figure 5. - Radiance and Reflectance Translation (Shaw et al., 2003) 

Spectral Variability  

One of the difficulties in anomaly detection is the variability of the target material’s 

spectrum in the wavelength domain and the interaction with these spectrums with the spectrums 

of those of background materials. These inherent variabilities are a result of atmospheric 

attenuation and scattering, sensor resolution, and slight changes in material composition 

(Manolakis et al., 2009). This causes the problem to go from the deterministic domain and adds 

noise to go to a stochastic domain. Additionally, the resolution of the sensor in the spatial 

domain needs to be appropriate for the situation, so targets of interest can be fully separated from 

the background for each individual pixel. If this is not done, mixed pixels occur, and 
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methodologies such as target fill factors must be used to distinguish the components of the pixel.  

These issues are highlighted in Figure 6.  

 
Figure 6. - Target Detection Algorithm Issues (Manolakis, 2010) 

 

 Often times, the features at the unique spectral bands are modeled as normal distributions 

that are correlated with the other spectral features of each of the pixels. Therefore, the collection 

of pixels for each class can be described as multivariate normal distributions with certain means, 

or centroids, and covariance matrices that describe the covariance, which can be normalized as 

the correlation of the factors in the vector for each pixel. Statistical inference methodologies 

using normal distributions have been studied and used extensively in the literature of 

classification and anomaly detection algorithms due to their mathematical representations and 

robustness of performance (Manolakis and Shaw, 2002). Manolakis and Shaw state that  

 
Algorithms based on normality assumptions are used to derive many detectors due to 
their usefulness in many practical applications, the theoretical intuitiveness of their 
operation and performance, and their use for the discovery and development of 
algorithms for nonnormally distributed HSI data (Manolakis and Shaw, 2002).  
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 Figure 7 displays an example of class separation in a cross-section of two spectral bands, 

620 𝜇𝑚 and 960 𝜇𝑚. This example is a false-coloring image where each color represents a 

different class of object in the image. It can be seen that some objects are easier to classify than 

others, with various levels of heterogeneity.  

 
Figure 7. - Two Dimensional HSI Representation (Manolakis, 2003) 

 

 The overall methodology of the development and comparison of detection algorithms 

hinges on the ability to accurately model the spectral variability that is inherent to the target and 

background distributions (Manolakis et al., 2009). This variability is a product of the size of the 

target in the scene and its mixing with background within pixels, the environmental conditions 

present in the scene, sensor noise and resolution, and the stochastic component of the error 

within the spectra of the target and the background.  



23 

 An alternative approach that will not be studied in this research is the geometric approach 

which treats the spectrum as a vector that varies in an M-dimensional subspace of the data space 

(M<p), where p is the number of spectral bands. This approach treats the spectrum as a linear 

combination of vectors that constitute the subspace of the variability. These vectors are known as 

endmembers and can be taken from a library of previously collected data for the specific material 

or obtained using eigenvectors from the correlation matrix for the spectral bands (Manolakis et 

al., 2002).  

Basic methods for the whole domain of supervised learning and classification will be detailed in 

the following section. These algorithms represent the classification of data points with various 

amounts of assumptions.  

Supervised Learning/Pattern Classification 

 The following is a brief discussion of the methodology of Supervised Learning. Within 

the realm of supervised learning, the class labels are known up front and are used to build and 

improve the classifiers. Since within the datasets used in this research the pixels that represent 

targets and those that represent background are known a priori, this research deals primarily in 

Supervised Learning. This is in contrast to unsupervised learning algorithms, in which the class 

labels are unknown, and instead, analysis is done to estimate and separate classes using their 

intrinsic qualities. Unsupervised learning is primarily done with various clustering algorithms.  

The process of supervised learning is comprised of the original collection of the data, 

which in HSI is the sensor collection of HSI data from an aircraft or satellite. This raw data gets 

pre-processed by filling in values for missing data or extracting features using methods such as 

Principal Component Analysis to reduce the size of the feature matrix. There could also be some 

initial work done due to the images or datasets not being in a standard form. This would be the 
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case when sensors collect images at different angles and in different weather conditions. This 

reduced feature matrix is then sampled by splitting some of the data in a training set and some in 

a test set. Theses training and test sets are then put through an additional round of pre-processing 

in order to further reduce any redundant information (Raschka, 2014). 

 The resulting training set is placed within a learning algorithm to train it to make correct 

decisions about target and background splits. Once the learning algorithm is sufficiently trained, 

certain hyperparameters are developed and optimized to assess model quality. These 

hyperparameters are quality assessments of the algorithm that are independent to any learning 

that is accomplished from the training sets of data. These parameters include bias and variance 

estimates that ensure adequate generalization of the algorithm. Once these parameters are 

optimized, the model is usually kept as a representative model. Throughout this training process, 

cross validation is accomplished to split the available data into groups for training and some for 

testing and finally validation. Training allows the model to learn the data and draw adequate 

decision boundaries. Testing data is done to ensure that the model is generalized to fit other sets 

of data without propagating too much bias (Raschka, 2014).   

Post-processing is done by assessing the model using a confusion matrix that is 

comprised to true positive, true negatives, false positives, and false negatives. These values are 

also manipulated into other values that can be used to assess certain probabilities of classification 

performance. The main goal of using a confusion matrix is to develop robust measurements that 

can be utilized in many different situations with many different assumptions, including prior 

costs and probabilities. For that specific instance of the interaction between the model and the 

training set, the total number and percentages of classification rates are recorded and used to get 

an overall interpretation of model accuracy. Each one of these measurements is prone to its own 
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bias and variance and caution must be heeded when attempting to make any overarching logical 

conclusions using this type of post-processing assessment. From this step, the model can then be 

tested recursively on new data, which helps the analyst optimize parameter values, or it can be 

finally validated on a separate set of data. When this tuning and refinement is completed, the 

model can then be used to make predictions on brand new, real-world data, with some 

confidence that the model is performing well (Raschka, 2014). Figure 8 captures this process. 

 
Figure 8. - Supervised Learning Overview (Raschka, 2015) 



26 

 The process of training, validating, and testing the model is seen in Figure 9. Error, 

consisting of bias, variance, and noise, is propagated when using the model developed from the 

training set to model the data in the validation set. Several instances of the model at various 

degrees of complexity are developed, and the validation set error (after integrating all forms of 

error) is minimized to find the optimum complexity. The training and validation sets are thus 

utilized for assessing the final model, which is then assessed against a test set, which measures 

the performance that is expected for that particular model specification. The test set error 

components are then integrated and used as a guideline for the amount of error present in the 

model. 

 
Figure 9. - Testing, Training, and Validation (Dougherty, 2013) 
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Within the realm of anomaly and detection algorithms, likelihood ratio tests are often 

used to test whether the pixel under test is part of the background or part of a different, target 

distribution. The basic formulation of the likelihood ratio test is based on the null hypothesis that 

the pixel is from the background distribution and the alternative hypothesis that it is part of a 

different target distribution. This is formulated as a ratio of probabilities (Dougherty, 2013):  

Λ(𝑥) =
𝑓1(𝑥|𝑡𝑎𝑟𝑔𝑒𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡)
𝑓0(𝑥|𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑏𝑠𝑒𝑛𝑡)

=
𝑓1(𝑥|𝐻1)
𝑓0(𝑥|𝐻0)

 (1) 

where 

𝑥 represents the vector of the pixel under test   

Λ(𝑥): Likelihood ratio value 

𝑓1(𝑥|𝐻1): likelihood of observing 𝑥 under the target present hypothesis (𝐻1) 

𝑓0(𝑥|𝐻0): likelihood of observing 𝑥 under the target absent (background) hypothesis 

(𝐻0) 

 

If the value of Λ(𝑥) is over a threshold that is chosen by the analyst, the pixel is 

considered a target. If it is below the threshold, it is considered part of the background. In many 

systems, the goal is to maximize the probability of detection while keeping the probability of 

false alarm as low as possible. This is known as the Neyman-Pearson (NP) criterion (Manolakis 

et al., 2002).  

 The multivariate Gaussian distribution is often used for hyperspectral image 

classification. This distribution is used to model target distributions that are full pixel targets. 

This distribution is also used to model the background pixels in the scene, and there may often be 

a mixture of several multivariate Gaussian distributions inherent within the background. The 

hypothesis test that is used in this situation is based on the following hypotheses: 
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𝐻0: 𝑥~𝑁𝑝(𝜇𝑏,Σ𝑏) 

𝐻𝐴: 𝑥~𝑁𝑝(𝜇𝑡,Σ𝑡) 

(2) 

(3) 

 

where  

𝑥 represents the vector of the pixel under test   

𝑁𝑝 is the pdf of the multivariate Gaussian distribution 

𝜇𝑏, Σ𝑏 are the mean and covariance matrix of the background distribution 

𝜇𝑡, Σ𝑡  are the mean and covariance matrix of the target distribution 

Naïve Bayes Classifier  

 A naïve Bayes classifer is a discriminant function that is solely based on using Bayes’ 

rule with the assumption that each of the features that are used within the target and background 

distributions are independent. Bayes rule is formulated as the following (Dougherty, 2013) 

(Duda et al., 2001): 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦) =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 

(4) 

 

This formulation is equivalently,  

𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡|𝑥) =
𝑝(𝑥|𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) ∗ 𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡)

𝑝(𝑥)
 

(5) 

 

The posterior probability in the target/anomaly detection case is the probability that the pixel is a 

target given the features that are used for classification. Likelihood has the same interpretation as 

before, which is the likelihood that the pixel is part of the target distribution. This is equivalently 

interpreted as when all other things being equal, the category, target or background, for which 

the likelihood is larger, is more likely the true category. The prior probability is a measurement 
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of the knowledge that we have that we can predict a priori that the pixel is either part of the 

target or the background. Usually this is estimated from the number of pixels that are actually 

targets and the number that are actually background. The evidence is largely ignored in this 

formulation and is only a scale factor that states how frequently we will measure a pattern with 

the individual feature value and it ensures that the posterior probabilities sum to one (Duda et al., 

2001).  

 This formulation assumes that the features are all independent in the scene and the 

classification is done simply by assigning the pixel to either target or background depending on 

the maximum a posteriori (MAP) probability. This means that each feature has a conditional 

probability of the predicting the class, and due to independence, the posterior probability is 

calculated by multiplying all of the probabilities for each individual feature together for that 

specific class. This resultant probability constitutes the likelihood. This is then multiplied by the 

prior distribution. Therefore, the decision is to select that the pixel is a target if the following 

holds (Dougherty, 2013): 

𝑝(𝑥|𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) ∗ 𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡) > 𝑝(𝑥|𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑏𝑠𝑒𝑛𝑡) ∗ 𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 𝑎𝑏𝑠𝑒𝑛𝑡) (6) 

 Dougherty discusses the implications of the independence assumptions: 

Despite the fact that far-reaching independence assumptions are often inaccurate, the 
naïve Bayes classifier works well in many real-world situations. The decoupling of the 
class conditional feature distributions means that each distribution can be independently 
estimated as a one-dimensional distribution. This in turn helps to alleviate problems 
stemming from the curse of dimensionality. Like all probabilistic classifiers under the 
MAP decision rule, it arrives at the correct classification as long as the correct class is 
more probable than any other class; hence, class probabilities do not have to be estimated 
very well. In other words, the overall classifier is robust enough to ignore serious 
deficiencies in its underlying naïve probability model” (Dougherty, 2013).  

Quadratic Discriminant Analysis  

Quadratic Discriminant Analysis is used to build a Quadratic Detector in cases when the 

covariance matrix of the background does not equal the covariance matrix of the target 
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distribution. This discriminant function is quadratic due to the quadratic term still being present 

in the function.  For two features, the discriminant will be ellipses, circles, parabolas, hyperbolas, 

lines or multiple lines (Dougherty, 2013). The likelihood ratio value is the following: 

 

Λ(𝑥) =
|Σ𝑏|1/2exp [−1/2(𝑥 − 𝜇𝑡)𝑇Σ𝑡−1(𝑥 − 𝜇𝑡)]
|Σ𝑡|1/2exp [−1/2(𝑥 − 𝜇𝑏)𝑇Σ𝑏−1(𝑥 − 𝜇𝑏)]

 
  (7) 

The logarithm of this function yields: 

𝑦 = 𝐷(𝑥) = (𝑥 − 𝜇𝑏)𝑇Σ𝑏−1(𝑥 − 𝜇𝑏) − (𝑥 − 𝜇𝑡)𝑇Σ𝑡−1(𝑥 − 𝜇𝑡)   (8) 

This is a comparison of the 𝑥 vector under test of the Mahalanobis distance between the target 

and background distributions. Figure 10 shows the resulting decision boundaries for various 

constructs of the two Gaussian distributions that are used in the certain example. Due to the 

shapes of the elliptically contoured distributions, the boundaries could be straight lines, ellipses, 

circles, or hyperbolas, which are, in fact, all quadratic boundaries.  
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Figure 10. - Quadratic Discriminants (Duda et al., 2001) 

Classification Trees  

  Classification trees are structures comprised of decision nodes that allow the analyst the 

ability to divide the training data set into groupings based on binary splits at each node. The 

starting node is denoted a root node that is considered to be the parent of every other node. 

Branches are formed by splitting the data at each individual feature in a recursive fashion. When 

the tree is built to the actual class of the response variable, or until some hyper-parametric 

threshold is reached, the tree reaches the leaf nodes. The tree is updated during the process of 
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fitting as it decides the best splits of the data based on the most significant features. The main 

advantages of the classification trees are that they are easy to use and interpret, which means that 

analysts can easily put them into operation without needing the complex knowledge necessary to 

explain and use other classification algorithms. Most often, the feature space that is analyzed 

with Classification Trees is comprised of categorical factors that have no direct interpretation of 

distance between one another. For example, there is no direct interpretation of the distance 

between category levels “Blue” and “Red”. Questions at each node can be asked to determine the 

correct state of nature for each of the response classes. These questions help the analyst 

understand what comprises each class in terms of attributes, and which attributes are the most 

important to explicitly describe the categories. At each node, a decision must be made to 

determine whether the node is a finalized leaf node based on the distribution of classes at that 

node, or whether another splitting criterion should be used to split into additional branches. 

Additionally, the tree structure is very receptive of Subject Matter Expertise, which can be used 

to narrow down the decision space. 

 The typical Classification Tree structure is seen in Figure 11, consisting of the root node 

that contains all of the points in the dataset.  At this point, the most discriminating rule is used to 

split the data into two sets. This is whether or not the data in this case, the fruit, is green. This 

process is reiterated at these two separate nodes, using a value of a feature distribution that 

separates the data into two groups using a distance or information metric. When the process hits 

a certain threshold and can no longer be split, or each of the nodes contains values from only one 

class, the process is terminated.  In this case, the largest leaf nodes contain only two fruit.  
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Figure 11. - CART Representation (Duda et al., 2001) 

 

 Figure 12 represents the types of decision spaces that are developed when creating and 

implementing trees. These spaces are necessarily perpendicular to the feature axes, as at each 

split, the question being posed is a binary decision that separates the classes in some proportion. 

However, any decision space can be approximately estimated by growing the tree as much as 

necessary.  There is an inherent bias/variance tradeoff when creating these trees, as growing the 

tree too large is considered over-fitting to the data in the training set, and under-fitting the tree 

results in bias in that all classes are not specifically or accurately separated into classes. The 

proper size and complexity of the tree is computed by using pruning techniques that optimize 

certain parameters.  
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Figure 12. - CART Decision Boundaries (Duda et al., 2001) 

 

 Figure 13 is an additional representation of the orthogonal binary decision space that 

separates class labels in a rectangular grid like pattern. If more and more of these grids were 

overlaid on an image or dataset, the grid could roughly approximate any class distribution. 

(Kuncheva, 2004).    

 
Figure 13. - CART Decision Boundaries (Kuncheva, 2004) 
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 In order to create the best possible tree, there must be measurements of how each set of 

nodes is separating the classes as much as possible, so each final leaf node is as discriminatory as 

possible with a higher proportion of one class or another. The amount of mixing of class labels 

that each leaf mode contains is known as impurity, with a leaf node that has the same proportion 

of one class as it does the other having the most impurity, while a leaf node with only one class 

is at 100% purity, or 0% impurity. The various measurements of impurity are seen below (Duda 

et al., 2001).  

Entropy impurity: 

𝑖(𝑁) = −�P�ωj�log2P(ωj)
j

 (9) 

  Gini impurity:   

𝑖(𝑁) = �𝑃(𝜔𝑖)𝑃�𝜔𝑗� =
1
2
∗ [1 −�𝑃2(𝜔𝑗)]

𝑗𝑖≠𝑗

 
(10) 

 

Misclassification impurity: 

𝑖(𝑁) = 1 − max
𝑗

𝑃(𝜔𝑗) (11) 

  where 

                       𝑃�𝜔𝑗� is the prior proportion of class 𝜔𝑗 at the node 

 A representation of the various impurity measurements for a two-class problem is seen in 

Figure 14. As the proportion of one class to another approaches 0.5, the impurity measure 

reaches its maximum, which for Entropy is 1.0, while it is 0.5 for Gini and Classification 

Impurity. As the proportions get closer to 0.0 or 1.0, the impurity measurements tend towards 0. 

In Figure 14, the variable 𝑝 is the proportion of data points that fall into some class for the node 

being analyzed. As the proportion of points at the node reach a uniform distribution of 0.5, each 
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of the measurements are at their highest levels. As the purity of class at the node increases (or 

decreases), each of these measurements will approach 0. The nodes with the lowest impurity 

measurement will be selected for the split, as they contain the most information, as the largest 

proportion of one single class will be represented by that node split.  

 
Figure 14. - CART Decision Measurements (Dougherty, 2013)  

Confusion Matrix 

  A confusion matrix is the means in which a model can be assessed for accuracy of 

assigning data points to the correct classes for a binary decision classification. This decision is 

comprised of positives and negatives, usually with positives meaning some sort of target of 

interest, while negatives meaning some sort of background population that is not particularly of 

interest. Figure 15 is a representation of the typical confusion matrix and the resulting measures 

that can be derived.  
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Figure 15. - Confusion Matrix Terms (Sharma et al., 2009) 

 

 The confusion matrix is naturally extended to a graphical representation of distributions 

for the two class problem for each individual feature. Figure 16 is a representation of a single 

feature and the class distribution associated with that feature. The blue distribution is arbitrarily 

labeled the negative distribution and the red distribution is labeled the positive distribution. The 

area in blue is the probability that a data point in the negative population is correctly classified as 

a negative, which is calculated as the True Negative Fraction, and the area in red is the 

probability that a point belonging to the positive class is classified as a positive point, which is 

calculated as the True Positive Fraction. The light red area represents the case of a point 

belonging to the positive class being classified as a negative point, which is calculated as the 

False Negative Fraction, and the light blue area is the case where a truly negative data point is 

classified as belonging to the positive class distribution, which is the False Positive Fraction. The 

results for each of these percentages are seen in the matrix alongside the distributions. The TPF 

and FPF values are plotted within a Receiver Operating Curve (ROC), with each particular 

instance along the curve being calculated for some particular threshold or parameter value. The 
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Area Under the Curve (AUC), is a useful measurement of the accuracy of the classifier for 

thresholds and parameters of interest, with the line associated with a random guess of positive or 

negative going from the bottom left of the plot to the upper right. As the classifier becomes more 

accurate, the AUC value will approach unity (Dougherty, 2013).  

 
Figure 16. - Decision Thresholds and ROC Curve Representation (Dougherty, 2013) 

 

Value Focused Thinking  

 The concept of Value Focused Thinking (VFT), was developed by Ralph L. Keeney at 

the University of California in order to break the intuitive trend of focusing on alternatives when 

making decisions, and thus trying to fit the options to the objectives and not the objectives to the 

options. Keeney considers the key goals that are used to develop the foundations of correct 

decisions to be values. He states, “Values are fundamental to all that we do; and thus, values 

should be the driving force for our decision making. They should be the basis for the time and 

effort that we spend thinking about decisions, but this is not the way it is” (Keeney, 1996). This 

is similar to the idea of jumping to conclusions without the necessary logic in place to form the 

basis of why the conclusions are valid in the first place. By forming this type of structural 

argument for the decisions that you make, new alternatives can be synthesized, and sometimes, 
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new values can be deduced from this logic, which makes the process iterative. Keeney believes 

that values should always be the first place to start.  

 Keeney expands on the delineation of alternative-focused thinking from value-focused 

thinking by arguing that alternative-focused thinking is more of a way to solve decision 

problems, while value-focused thinking goes beyond this realm and helps identify desirable 

decision opportunities and create new alternatives. He believes that there are three main 

differences in these perspectives. He states, “ 

First, significant effort is allocated to make values explicit. Logical and systematic 
concepts are used to qualitatively identify and structure the values appropriate for a 
decision situation. Second, this articulation of values in decision situations comes before 
other activities. Third, the articulated values are explicitly used to identify decision 
opportunities and to create alternatives (Keeney, 1996).  

 
From this statement, it is clear that he values structure in the decision making process that allows 

the optimization of inference from all of the information that is presented a priori.  

 Figure 17 lists the advantages of thinking about values over thinking about alternatives. 

The advantages range from the improvement of communication and relationships between the 

people involved in the decision, and the improvement of information collection, to helping create 

and evaluate alternatives, as well as discovering strategic policies and objectives that may have 

been hidden before. The main point of this process is that alternatives are only one product of 

keeping the values in focus and there is a plethora of other positive byproducts that help the 

organization.  
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Figure 17. - Value Focused Thinking Advantages (Keeney, 2009) 

 

 Keeney discusses his view that decisions are complex ideas that are structured using 

multiple objectives, with each objective being a statement of some end that is desired to be 

reached in the context of the decision. This means that each objective is dependent on the 

decision context that it is analyzed and made in, the object that is being decided upon, and some 

delineation of the preference that a decision maker has, which is used to optimize the final result 

of the parameter that is extracted from the decision. There is also a difference between the terms 

‘fundamental objectives’ and ‘means objectives’ which are both used in a decision making 

context. Fundamental objectives are the actual ends to the means that are valued in the context, 

while means objectives are met in order to achieve those ends. The broadest objectives in any 

organization are considered strategic objectives, which help meld all of the other decisions made 

by the organization.  

In order to understand the true meaning of these objectives, many times the analyst must 

interview the Decision Maker (DM) or Subject Matter Expert (SME) to drill down to the logical 

statements and axioms present in the objectives. If there is confusion about what the objectives 
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actually represent, this confusion could propagate to the choice of alternatives and other 

decisions. This type of ‘devil’s advocate’ analysis is also useful to discover other important 

objectives that had not been thought of previously. Additionally, it is important to rank and 

weight these objectives as some of the time and resources spent reaching one may be out of 

proportion with the actual impact and importance these objectives have on the overall decision 

making. By changing the distribution of weights from a uniform distribution to one that weighs 

more important objectives higher, a more realistic representation of the quality of each individual 

alternative that is applied to the decision can be achieved. All objectives should be listed, ranked, 

and a percent weight of importance should be distributed. Analyzing this list of objectives could 

help determine if some group of objectives are out of proportion with others or which ones need 

to be ranked higher than others based on strategic objectives.  

Keeney discusses the steps within the value assessment as thus,  

The value assessment comprised several separate tasks: listing the objectives, 
distinguishing between means objectives and fundamental objectives, identifying 
measures for the objectives, and prioritizing them. The results of each task helped us to 
articulate company values and use these to suggest decision opportunities that might be 
worthwhile to pursue (Keeney, 1996).  
 

This demonstrates the ability for this process to synthesize new ideas and create even more 

decision opportunities that were not known a priori. Many types of different surveys can be 

utilized beyond just interviewing Decision Makers and SMEs to extract information. These 

include surveys to any type of stakeholder, including, often, the general public, the employees or 

users of the alternatives, or anyone else that could be affected by the decision. Keeney explains,  

 
The strategic objectives of an organization can guide the identification of decision 
opportunities that enhance both the likelihood of achieving those objectives and the 
degree to which the objectives are achieved. This process,  part of value-focused 
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thinking, helps to put the decision-maker in control of the decisions being faced rather 
than leave that control to others and to happenstance” (Keeney, 1996).  

 
In order to develop correct alternatives and make correct decisions, the analyst must be proactive 

in the process and should not wait for knowledge to reveal itself. 

There is often confusion about how to list objectives and which ones should be used to 

help the analyst provide input to the Decision Maker. VFT contains many different procedures 

that assist in the compiling of objectives, categorizing the objectives as means or ends and 

logically ordering them, using the objectives to help discover or create new alternatives, and 

finally to understand new opportunities within the decision making process. It is necessary to 

poll the decision maker by asking for a comprehensive list of objectives under the assumption 

that there are no constraints limiting or preventing the fulfillment of the objectives. It is also 

important to then ask what the objectives would be after some amount of assumptions. Keeney 

states,  

Often one begins to think hard about a decision situation only after some alternatives 
become apparent. Articulating the features that distinguish existing alternatives provides 
a basis for identifying some objectives. For example, in considering alternative sites for 
an airport, one feature that differentiates the alternatives might be the disruptions to 
citizens due to high noise levels. This suggests the obvious objective of minimizing 
disruption from noise. You might ask respondents to list desirable and undesirable 
features of alternatives and use these to stimulate thought about objectives  
(Keeney, 1996).  
 
The raw list of objectives that is generated from this procedure should be analyzed to 

correctly align each to either means objectives or fundamental objectives. If the objective is an 

essential reason for interest in the overall situation, the objective is a fundamental objective, 

while if it is just a means of accomplishing some other objective, it is a means objective, and the 

additional objective should be also assessed for importance and type. Specification must be done 
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to logically decompose the objective into its different parts, which could also lead to additional 

objectives. Keeney explains,  

Suppose the CEO of a service firm identifies one objective as ‘to minimize 
nonproductive time spent by employees’. To better understand this objective, you might 
ask the executive to be more specific, or to list characteristics of nonproductive time. You 
might ask how nonproductive time occurs and whose nonproductive time is of concern. 
All of the responses should help specify the objective (Keeney, 1996).  
 

 Creating alternatives can prove to be a difficult task for various reasons. One reason is 

that many different types of alternatives could be left of an initial list. This is because there is 

often a need for analysts and decision makers to quickly find a limited set of alternatives and 

start working towards assessing those alternatives without expanding the list and taking the time 

to understand what is not on the list. There is also an anchoring effect that occurs due to the 

dependence that new alternatives have on previously listed alternatives, and each alternative will 

be within some radius of the other in terms of originality and scope. Most of the new alternatives 

will only be small tweaks of the previously deduced alternatives, and true originality is left in the 

minds of the analysts and DMs. Keeney argues, “Focusing on the values that should be guiding 

the decision situation removes the anchor on narrowly defined alternatives and makes the search 

for new alternatives a creative and productive exercise” (Keeney, 1996). Alternatives should be 

focused at fulfilling the demands of achieving the specified values and should be focused on the 

generation of a set of the most promising ones. A possible way of discovering new objectives is 

to think of what alternatives would be available if that particular objective was the only objective 

on the list, and then taking permutations of objectives and asking the same question. Alternatives 

should then be combined into single alternatives if possible. Means objectives should also be 

used for the same reason. At the end of the entire decision process, it is helpful to think if any 

new alternatives can be generated after the analyst’s state of knowledge has been fully updated.  
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Keeney admits,  

It may initially be difficult to articulate, review, and revise your objectives. You may get 
the feeling that you are not ‘solving’ your decision problems when you are just thinking 
about objectives. You may feel it is merely a philosophical exercise to articulate your 
values, whereas the decision problems facing you are real. But whether or not you label 
thinking about your values as an exercise, the results can help with any of the real 
decisions that you make. One good decision opportunity can repay you for a lot of 
‘philosophical’ thinking” (Keeney, 1996).  
 

In this way, VFT is all about articulating values logically in order to understand both the decision 

opportunities and additional alternatives that can be developed in cases that without this 

structure, it would be difficult or impossible to uncover.   

A systematic representation of the Value-Focused Thinking process is seen in Figure 18. 

This chart is comprised of ten different steps and two main subsections. The first step is the 

identification of the decision problem after careful study and deliberation with all of the Decision 

Makers and Stakeholders. From this, Step 2 is to create the value hierarchy to understand which 

objectives are means objectives and which are fundamental objectives, and how the values are 

related. From this hierarchy, measurements of the values must be decided upon in order to 

enumerate the fulfillment of the objectives. Step 4 is to create functions based on SME and DM 

input to understand which thresholds of the fulfillment of the measures should be weighted 

higher and whether these functions should be categorical or continuous functions. The hierarchy 

is then weighted in Step 5 using either local or global weights within the total hierarchy or only 

within the values, weighting each of the measurements against each other one at a time. These 

five steps complete the first major phase of the process, as now alternatives can be generated 

using the updated situational awareness that has occurred from logically eliciting the decision 

formulation.  
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As discussed previously, alternatives can be uncovered at each step along the way and 

should be always sought out in a parallel process as more knowledge is created. At this point, the 

alternatives that are currently in our stead can be scored using the hierarchy, which constitutes 

the completion of the value model. However, after this stage, Step 8 is to complete Deterministic 

Analysis in order to weigh each alternative against each specific measure, which can help us find 

bounds on which alternatives would be useful or chosen under certain situations, and which 

would be totally out of the question due to the alternatives that are better. Sensitivity Analysis is 

done in Step 9 in order to change the parameters and discover if there would be any change in 

the conclusions under different assumptions or desires. Finally, Step 10 is the communication of 

the Conclusions and Recommendations for the decision situation. From here, the whole process 

could be iterated if the selected alternative leads to even more decision opportunities. The main 

point is that the analyst’s work is never done, and they must be vigilant and adaptable to new and 

improved alternatives to make more refined decisions.  

 
Figure 18. - VFT 10-Step Process (Shoviak, 2001)  
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 An application of the Value Focused Thinking process was utilized by Major Brian 

Bassham, PhD in 2006 in order to assess the development of Automatic Target Recognition 

(ATR). Two separate perspectives were studied during his assessment, including the Evaluator’s 

and the Warfighter’s. Bassham explains,  

The method involves the development of a two-pronged decision analysis model that 
maps ATR MOPs (Measures of Performance) into values. This is a direct mapping for 
the Evaluator. However, the Warfighter thinks more in terms of MOEs (Measures of 
Effectiveness). To incorporate the Warfighter perspective, a combat model, using a 
notional, unclassified scenario, was exercised in a designed experiment to produce a 
response surface that could serve a surrogate and intermediate mapping from MOP to 
MOE (Bassham, 2006).  
 
This methodology is a unique combination of the VFT process in two different 

dimensions, the Warfighters and the Evaluators. It is seen in Figure 19. The MOPs in this case 

constitute the values that would be used in a VFT hierarchy.  

 
Figure 19. - VFT Process for Evaluators and Warfighters (Bassham, 2006) 

 

 The type of decision opportunity framework was slightly different than Keeney’s ten-step 

process, but it had the same elements. As seen in Figure 20, the steps used included first 

identifying the problem up front, then the objectives and alternatives, and then the next step 

combined the steps of developing measures, creating value functions, and weighting the value 

hierarchy in the previous process. This step is considered a decomposition and modeling of the 

problem in terms of the structure, uncertainties, and preferences inherent in the model. This 

would be reflected in the previous framework by the weights associated to the values and value 

functions that are associated with the measurements. From here, the best alternative is chosen, 
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and then reiterative sensitivity analysis is accomplished to ensure the robustness of the choice of 

alternative. Finally, after sufficient analysis has been accomplished, the final alternative is 

chosen and implemented.  

 
Figure 20. - Bassham's VFT Methodology (Bassham, 2006) 

 

The Hierarchy is seen below in figure 21. The top level values include robustness, 

classification ability, employment concept, declaration ability, cost, self-assessment accuracy, 

and overall detection performance. Some ideas from this methodology were used to accomplish 

the research in this thesis. Some however, are specific to the context of a broader range of ATR 

than is studied herein. 
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Figure 21. - ATR Value Hierarchy (Bassham, 2006) 

 

The weights that were chosen and implemented as a result of Step 5 of the VFT hierarchy are 

seen in Table 4. The same delineation of weight and ranking is done here as was done in 

Keeney’s article. This helped discover which objectives were initially under or over prioritized. 

This same assessment of ranking is done in this research effort and is one of the main cruxes of 

the advantages of VFT.  
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Table 4. - Evaluators MOP's (Bassham, 2006) 

 

 The same type of methodology for creating weights and values structured within 

objectives was utilized for the Warfighter’s perspective using the Measures of Effectiveness 

(MOEs). This is seen in Table 5. Ranks and values were elicited and compared for each MOE. 

Bassham states,  

A major complication in the decision-making process is the fact that picking a ‘best’ 
system based on MOPs does not necessarily lead to superior operational performance. In 
an operational environment the system is characterized by measures of effectiveness 
(MOEs), which are qualitative and quantitative measures of how well tasks are 
performed. The eventual end-user, the Warfighter, cares only about the benefit ATR 
technology offers in battle. Thus, selecting an ATR CS based upon superior MOEs would 
be of great interest to the Warfighter (Bassham, 2006). 

 
The final results of this study concluded that the evaluator and warfighter would pick two 

different optimum alternatives to put in place. This means that there should be some type of 

satisficing or mediation done to ensure that both parties are confident with the chosen option.  
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Table 5. - Warfighter's MOE's (Bassham, 2006) 

 

 The three different objectives that were developed using the Warfighter’s viewpoint 

included Maximizing the Effect on the Enemy, Minimizing Unintended Consequences, and 

Minimizing the Effect on Allies. The effect on the enemy was weighted the highest, due to the 

correlation of this objective with the success of the mission. This objective was broken down into 

Minimizing Expendables Remaining and Minimizing Warfighting Systems Remaining. These 

two means objectives represent a combination of the likelihood that the enemy will be crippled 

by exercising the mission. Minimizing Bad Press was itself a primary objective that was weighed 

by four different measurements that dealt with quantities of events that would be detrimental to 

the viewpoint of the military in the eyes of the general public. On the other side of the coin, the 

third primary objective, Minimizing Effects on the Allies, was split into the same types of means 

objectives as the Enemy Effect objective, although in this case, it is maximizing the warfighting 

systems and expendables remaining. A combat model was created to simulate the effects of the 

ATR technology in an operational environment.  This breakdown is shown in Figure 22.  
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Figure 22. - Warfighter Value Hierarchy (Bassham, 2006) 

 

 This example highlighted some of the challenges and issues that could be discovered in a 

real-world operational situation. Carrying out the analysis to completion helped elicit the 

challenges that would occur in making a structured decision, but it also helped to understand 

which alternatives should not be considered in future situations under the same assumptions. 

Practice makes perfect, and each time a decision situation is analyzed, the analyst becomes more 

capable of understanding the nuances that arise and this prepares them for more complicated 

scenarios.  

Bias/Variance Dilemma 

 The success and quality of a particular classifier can be analyzed using the bias-variance 

decomposition of the classification error. When assessing the difference between the estimated 

density of the class label frequency within a set of data and the true density of that set, a useful 
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statistic to use is the Mean Squared Error (MSE) between these two densities (Dougherty, 2013). 

This MSE can be composed of a combination of error due to the bias inherent in the classifier 

and the variance. When training classifiers, if the classifier is not flexible enough too few 

parameters) to estimate near the expected values for the class labels, then the classifier will 

exhibit high bias. If the classifier becomes too flexible (too many parameters), the classifier is 

known to over-fit the predictions towards the instance of the training data set. If this occurs, the 

classifier is said to exhibit high variance. This would mean that it is predicting different class 

labels when it is exposed to different training sets. Many supervised learning classifiers can be 

tuned in terms of this trade-off automatically or by containing a parameter than can be 

manipulated by an analyst.  

 An illustration of the ideas of bias and variance are found in Figure 23, where dart boards 

are used as examples (Fortmann-Roe, 2014). In the upper left board, the darts have been thrown 

both near the center of the target, exhibiting low bias, and with a high level of precision, as they 

are clumped together. In the upper right board, the darts have been thrown near the center of the 

target, but with less precision, as there is higher variability in their locations. The board on the 

bottom left has a high precision value, as all of the darts are packed together, while they miss 

their mark, exhibiting high bias. Finally on the bottom right, the darts are neither packed tightly 

together nor thrown near the center of the target, meaning that the process is exhibiting both high 

variance and bias.  
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Figure 23. - Bias and Variance Comparisons (Fortmann-Roe, 2014) 

 

 Figure 24 depicts the phenomenology of the relation between bias and variance and the 

training and test sets that are used in the classification approach. As the model complexity 

increases and more flexibility is built in the model with additional parameters, the bias, or 

closeness of the model predicting towards some target representation of truth, decreases, but the 

variation of the classifier’s modeling ability to additional sets of data, the variance, increases. 

The prediction error is comprised of the bias and variance components and it decreases in 

training, as seen in the blue curve, as the model complexity increases, since the model is being fit 

to the training sample. However, the red curve, which represents the prediction error across 

model complexity for test samples, would simultaneously increase due to this increase in 



54 

variance. It is important to find the point where variance is tempered for the test sample. At this 

point, the model has been adequately trained and tested and can move on to the validation stage.  

 
Figure 24. - Bias and Variance per Model Complexity (Hastie et al., 2009) 

Dougherty explains the concept and importance of over-fitting,  

The No Free Lunch Theorem throws into question our preference for avoiding over-
fitting and choosing the simplest classifiers with fewer features and parameters. In the 
former case, there are indeed problems for which avoiding over-fitting actually leads to 
worse performance. It is not over-fitting per se that causes poor performance; it is rather 
the mismatch of the algorithm (in use) to the specific algorithm (describing reality). As 
for simple classifiers (in line with Occam’s razor), our bias towards simple solutions may 
have an evolutionary basis, i.e., there is a strong selection pressure for simple schemes 
which require fewer neurons and less computational time (Dougherty, 2013).  
 

Therefore, the idea of over-fitting stems from assuming that the algorithm that has been 

developed is in actuality the correct formulation for a generalized version of reality, when better 

algorithms are actually more suitable.   

 Figure 25 displays the relationship between the number of parameters in the model to the 

error decomposition components of the loss function, 𝐵𝑖𝑎𝑠2 and 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒. As the number of 
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parameters increases, the model becomes more flexible, and the model fits to the data better. 

This means the 𝐵𝑖𝑎𝑠2 value decreases. As the number of parameters increases, the data also 

over-fits to the specific instance of data, including the noise that is inherent within that dataset. 

Therefore, the variance increases as the number of parameters and thus the flexibility increases.  

 
Figure 25. - Bias and Variance per Number of Parameters (Dougherty, 2013) 

 

The MSE is defined as (Dougherty, 2013): 

𝑀𝑆𝐸(𝑥) = 𝐸{(�̅� − 𝑥)2} (12) 

where  

𝑥 is a single parameter, be it a pixel class of interest or some particular estimate of 

classifier performance. 

�̅� is the estimate of the parameter of interest.  

E is mathematical expectation.  
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The bias and variance in this case is defined as the following (Dougherty, 2013):  

𝐵(𝑥) = 𝐸{(�̅� − 𝑥)} 

𝑉(𝑥) = 𝐸{(�̅� − 𝐸(�̅�))2} 

(13) 
 
(14) 

The MSE value is decomposed in terms of bias and variance as (Dougherty, 2013): 

𝑀𝑆𝐸(𝑥) = 𝐵2(𝑥) + 𝑉(𝑥) (15) 

A useful example is found within the context of the K-Nearest Neighbors classification 

algorithm. In K-Nearest Neighbors, the class of a point of interest is predicted by choosing an 

some number of “neighbors” of the point using some choice of distance value. A voting method 

is used to determine the class of the point of interest using these nearest points. If too many 

points are chosen, the classifier is said to exhibit bias, as the estimated class will not usually 

correspond with the actual class, since the classifier is not flexible enough. However, if too few 

points are chosen, the classifier is said to exhibit high variance, as the predictions will be fit too 

tightly, and any new data sets that are used will not result in quality estimates. When there is 

high variance, the classifier is thought of as fitting the estimates to the noise of the particular data 

set.  

The key to optimizing the classifier is to find an amount of flexibility resulting in a 

reduction of bias and variance to an acceptable level. Definitions for the bias and variance in 

classification tasks are a still open research topic. There have been multiple proposals for the 

definition and calculation of these values, which will be seen in following paragraphs.  

 The state of nature at a point x in the overall feature space is a random variable 𝜔 ∈ Ω, 

where Ω is the overall set of possible class labels, and 𝜔 is the class label that is chosen. The 

classifier is used to determine the state of reality by picking the best class label it possibly can 

from Ω (Kuncheva, 2004). The true values of the posterior probabilities for the multiple classes 
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are 𝑃(𝜔𝑖|𝑥), and the probabilities across all the possible classifiers that could have been chosen 

is 𝑃𝐷(𝜔𝑖|𝑥), which represents the guessed state of nature for that classifier (Kuncheva, 2004). 𝑃𝐷 

is the probability for a specific training data set 𝐷. This represents the probability that a 

randomly chosen classifier will assign the particular class label for the point of interest. 

Σ𝑖𝑃(𝜔𝑖|𝑥) = 1 and Σ𝑖𝑃𝐷(𝜔𝑖|𝑥) = 1 (Kuncheva, 2004). 

 Dougherty states that “The bias of an estimate is the systematic error incurred in the 

estimation; the variance of an estimate is the random error incurred in the estimation” 

(Dougherty, 2013). The idea of bias for any estimate is the averaged difference between the true 

and predicted values. In this particular case, this means that bias represents the difference 

between the true correct probability of choosing the correct class for the point in the feature 

space and the estimated distribution, 𝑃𝐷(𝜔𝑖|𝑥).  

The idea behind variance is thought of as a measurement of the precision of the classifier 

in predicting the class of the point, independent of what is actually going on. Typically for a 

random variable, the measure of variability is its variance, but this is not the case for categorical 

variables such as the class label of the point. Entropy is often used as an estimator for a 

categorical variable, which is formulated as the following: 

𝐻 = −�𝑃𝐷(𝜔𝑖|𝑥) log𝑃𝐷(𝜔𝑖|𝑥)
𝜔𝑖

 

 

(16) 

In this case, 𝐻 = 0 occurs when no variability is present, while 𝐻 = log 𝑐, where 𝑐 

represents the number of classes in the data, occurs when the variability is the highest, and each 

class label has the same probability of being chosen (Kuncheva, 2004). Gini Index is sometimes 

chosen as the variance, which is represented as the following: 
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𝐺 = �1 − 𝑃𝐷(𝜔𝑖|𝑥)2
𝜔𝑖

 (17) 

Noise is a measure of variability inherent in reality that does not depend on the choice or 

quality of the classifier being used. H and G are often used for noise as well (Kuncheva, 2004). 

 

According to Kuncheva, Kohavi and Wolpert define the bias, variance, and noise as the 

following (Kuncheva, 2004): 

 𝑏𝑖𝑎𝑠 = 1
2
∗ ∑ �𝑃(𝜔𝑖|𝑥) − 𝑃𝐷(𝜔𝑖|𝑥)�

2
𝜔𝑖  (18) 

This bias represents the difference between the true distribution of the particular class and 

the guessed one for the specific data set, and this difference is squared and added for each 

specific class. Each guessed distribution and probability can be generated from a bootstrap 

sample (Kuncheva, 2004). 

Variance =
1
2

(�1 − 𝑃𝐷(𝜔𝑖|𝑥)2
𝜔𝑖

) (19) 

The variance can be seen as the change in the best estimate the classifier makes for each 

class distribution regardless of what the true distributions are. The variance that is used here is 

the Gini index. Each guessed probability of the class distributions will be generated from 

individual bootstrap samples (Kuncheva, 2004).  

𝑛𝑜𝑖𝑠𝑒 =
1
2

(�1 − 𝑃(𝜔𝑖|𝑥)2
𝜔𝑖

) (20) 

This noise value can be interpreted as the variability that is inherent to the process 

regardless to the classifier used. The decomposition of the error term into bias, variance, and 

noise are different for each of these formulations. For Kohavi and Wolpert, the following is the 

breakdown (Kuncheva, 2004): 
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𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 1 −�𝑃(𝜔𝑖|𝑥)𝑃𝐷
𝜔𝑖

(𝜔𝑖|𝑥) +
1
2
∗�𝑃

𝜔𝑖

(𝜔𝑖|𝑥)2 +
1
2
∗�𝑃𝐷

𝜔𝑖

(𝜔𝑖|𝑥)2 

−
1
2
∗�𝑃

𝜔𝑖

(𝜔𝑖|𝑥)2 −
1
2
∗�𝑃𝐷

𝜔𝑖

(𝜔𝑖|𝑥)2  

=
1
2
∗ ��(𝑃(𝜔𝑖|𝑥) − 𝑃𝐷(

𝜔𝑖

𝜔𝑖|𝑥))2� +
1
2
∗ (−�𝑃𝐷(𝜔𝑖|𝑥)2) +

1
2
∗ (1 −�𝑃(𝜔𝑖|𝑥)2)  

𝜔𝑖𝜔𝑖

 

= 𝑏𝑖𝑎𝑠 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 

(21) 

 According to Kuncheva, Breiman defines a noise, bias, and spread term for bias and 

variance decomposition. The noise term is the same as the Bayes error for that 𝑥 (Kuncheva, 

2004).  

𝑛𝑜𝑖𝑠𝑒 = 1 − 𝑃(𝜔∗|𝑥) 

𝑏𝑖𝑎𝑠 = (𝑃(𝜔∗|𝑥) − 𝑃�𝜔∗��𝑥�)𝑃𝐷�𝜔∗��𝑥� 

where  

                                     𝜔∗ is the most probable class of the specific 𝑥 vector 

          𝜔∗� is the highest likelihood output for the specific 𝑥 vector from a specific classifier 

(22) 

(23) 

This bias is always nonnegative due to the maximization of 𝑃(𝜔𝑖|𝑥) by 𝜔∗. The variance term is 

Breiman’s formulation is labeled as a spread term, which shows how the distribution that is 

guessed by the classifier changes between class labels outside of the 𝜔∗ and 𝜔∗� labels 

(Kuncheva, 2004). 

𝑠𝑝𝑟𝑒𝑎𝑑 =  � �𝑃(𝜔∗|𝑥) − 𝑃(𝜔𝑖|𝑥)�𝑃𝐷(𝜔𝑖|𝑥)
𝜔𝑖≠𝜔∗

 (24) 
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Breiman’s error decomposition is seen in Equation 25 (Kuncheva, 2004): 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 1 −�𝑃(𝜔𝑖|𝑥)𝑃𝐷
𝜔𝑖

(𝜔𝑖|𝑥) = 1 − 𝑃(𝜔∗|𝑥) + 𝑃(𝜔∗|𝑥)�𝑃𝐷(𝜔𝑖|𝑥)
𝜔𝑖

 

−  �𝑃(𝜔𝑖|𝑥)𝑃𝐷(𝜔𝑖|𝑥)
𝜔𝑖

 

= 1 − 𝑃(𝜔∗|𝑥) + ��𝑃(𝜔∗|𝑥) − 𝑃(𝜔𝑖|𝑥)�
𝜔𝑖

𝑃𝐷(𝜔𝑖|𝑥) 

= 1 − 𝑃(𝜔∗|𝑥) + �𝑃(𝜔∗|𝑥) − 𝑃�𝜔∗��𝑥�� 𝑃𝐷�𝜔∗��𝑥� 

+��𝑃(𝜔∗|𝑥) − 𝑃(𝜔𝑖|𝑥)�
𝜔𝑖

𝑃𝐷(𝜔𝑖|𝑥) 

= 𝑛𝑜𝑖𝑠𝑒 + 𝑏𝑖𝑎𝑠 + 𝑠𝑝𝑟𝑒𝑎𝑑 

 

(25) 

 

Domingos takes a different approach to defining bias, variance, and noise, in that he 

attempts to develop a uniform definition across all loss functions.  

𝑙(𝑇(𝑥),𝐷(𝑥)) is the loss for 𝑥 that occurs when a randomly selected classifier 𝐷 is applied to a 

vector, 𝑥, and where 𝑇(𝑥) is the true label at that specific x vector and 𝐷(𝑥) is the guessed label. 

The bias for the specific x value is: 

𝑏𝑖𝑎𝑠 = 𝑙(𝜔∗,𝜔∗�) (26) 

The bias is independent of the classifier that is being used to determine class label and is only 

dependent on the most often guessed label (using resampling), which is considered the majority 

label, and designated by 𝜔∗� and the optimal class label for the particular x, which is 𝜔∗. This 

results in bias that is either 0 or 1 depending upon if the label is matched to the optimum class 

(Kuncheva, 2004).  

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜀𝐷(𝑙 �𝜔∗� ,𝐷(𝑥)�) (27) 

For the 0/1 loss function, the variance is  
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𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  � 𝑃𝐷(𝜔𝑖|𝑥) = 1 − 𝑃𝐷(𝜔∗�|𝑥)
𝜔𝑖≠𝜔∗�

 

𝑛𝑜𝑖𝑠𝑒 = 𝜀𝑇(𝑙(𝑇(𝑥),𝜔∗))  

(28) 

(29) 

The noise stems from the data set distributions that are being analyzed and is independent of 

specific classifiers. For the 0/1 loss function, the noise equation works out to: 

𝑛𝑜𝑖𝑠𝑒 = 1 − 𝑃(𝜔∗|𝑥) (30) 

The best model will result in the posterior probabilities that correspond to the optimal class label 

probabilities, which means that 𝑃(𝜔𝑖|𝑥) = 𝑃(𝜔∗|𝑥). Kuncheva then discusses the philosophy of 

each member of the bias and variance decomposition for particular loss functions.  

“Then the bias measures how far the majority prediction is from the optimal prediction, the 

variance shows the variability of the predicted label about the majority prediction, and the noise 

tells us how far the optimal prediction is from the truth (Bayes error)” (Kuncheva, 2004).  

The error decomposition for Domingos is different depending on the loss function that is 

employed.  

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 𝑐1 ∗ 𝑛𝑜𝑖𝑠𝑒 + 𝑏𝑖𝑎𝑠 + 𝑐2 ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (31) 

𝑐1, 𝑐2 are either constants or expressions that depend on the utilized loss function. For zero-one 

loss, expressions are used for these variables that depend on the bias, variance, and noise 

functions.  

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 𝑃(𝜔1|𝑥)𝑃𝐷(𝜔2|𝑥) + 𝑃(𝜔2|𝑥)𝑃𝐷(𝜔1|𝑥) (32) 

When the example vector is unbiased, 𝑏𝑖𝑎𝑠 = 0  

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = (1 − 2 ∗ 𝑛𝑜𝑖𝑠𝑒) ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑛𝑜𝑖𝑠𝑒 (33) 
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When the 𝑥 is unbiased, the probability of error decreases when the variance decreases. This 

makes sense, as variance dominates the noise, and focus should be on training the classifier to 

decrease this variance component.  

When the example vector is biased, 𝑏𝑖𝑎𝑠 = 1, the decomposition is the following 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑥) = 𝑏𝑖𝑎𝑠 + (2 ∗ 𝑛𝑜𝑖𝑠𝑒 − 1) ∗ 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 − 𝑛𝑜𝑖𝑠𝑒 (34) 

Therefore, against intuition, for these biased examples, increasing the variance actually decreases 

the amount of error. This may explain why using a large ensemble of biased classifiers will 

decrease the total error of classification (Kuncheva, 2004).  

 Kuncheva describes the relationship between bias and variance for certain situations,  

All decompositions of the error are aimed at studying the structure of the error for 
different classifier models and ensembles of classifiers. Suppose that we build our 
random classifier D using different data sets drawn from the distribution of the problem. 
It is natural to expect that simple classifiers such as the linear discriminant classifier will 
have high bias (deviation from the optimal model) and low variance. Conversely, flexible 
classifiers such as neural networks and decision trees will vary significantly from data set 
to data set because they will try to fit the particular realization of the data as close as 
possible. This means that they will have high variance but their bias will be low 
(Kuncheva, 2004).  
 
The fluidity of the bias and variance quantities changes as parameter estimates are 

changed. This can be used to the advantage of the analyst, if the correct parameter manipulation 

is done. However, sometimes, the only choice is making a decision on a trade-off between bias 

and variance.   

If the classifier has a parameter that we can tune, then making the classifier more coarse 
and robust will diminish its sensitivity, therefore will decrease the variance but might 
increase the bias. Sometimes varying a classifier reduces both bias and variance, thereby 
giving a smaller error altogether for certain data sets. This is seen in the k-nearest 
neighbor classifier. For tree classifiers, the control parameter may be the depth of the tree 
or the constant used in prepruning. Typically, heavily pruned trees will have smaller 
variance and larger bias than trees fully grown to classify correctly all training samples 
(Kuncheva, 2004).  
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Friedman’s Formulation 

Bias and Variance for Classification 

 Friedman was the first statistician to attempt to separate the bias and variance 

decomposition from the regression case to the classification case. In the classification case, the 

following is true for a zero/one loss function (Friedman, 1997) (Duda et al., 2001).  

The following is Target/Discriminant function (Duda et al., 2001): 

𝐹(𝑥) = Pr[𝑦 = 1|𝑥] = 1 − Pr [𝑦 = 0|𝑥] (35) 

The discriminant function is thus: 

𝑦 = 𝐹(𝑥) + 𝜖 

𝑉𝑎𝑟[𝜖|𝑥] = 𝐹(𝑥)(1 − 𝐹(𝑥)) 

(36) 

(37) 

The target function is thus: 

𝐹(𝑥) = 𝜀[𝑦|𝑥] (38) 

Mean Square Error is minimized (Equation 39) (Duda et al., 2001): 

𝜀𝐷[(𝑔(𝑥;𝐷) − 𝑦)2] (39) 

If equal priors are assumed: 

𝑃(𝜔1) = 𝑃(𝜔2) = 0.5 (40) 

then the Bayes discriminant, 𝑦𝐵, equals 1
2
. The Bayes decision boundary will be the locus defined 

by 𝐹(𝑥) = 1
2
  (Duda et al., 2001). The classification error rate (averaged over each specific 𝑥 

vector), Pr [𝑔(𝑥;𝐷) = 𝑦], will result in the lowest error if it corresponds with the Bayes decision 

boundary,  

Pr[𝑔(𝑥;𝐷) = 𝑦] = Pr[𝑦𝐵(𝑥) ≠ 𝑦] = min[𝐹(𝑥), 1 − 𝐹(𝑥)] (41) 

 (Friedman, 1997) (Duda et al., 2001).   
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If not, then the prediction yields an error that is increased, seen here (Friedman, 1997)  

(Duda et al., 2001):  

Pr[𝑔(𝑥;𝐷)] = max[𝐹(𝑥), 1 − 𝐹(𝑥)] = |2𝐹(𝑥) − 1| + Pr[𝑦𝐵(𝑥) = 𝑦] (42) 

This error is averaged over all of the data sets to derive the following (Friedman, 1997)  

(Duda et al., 2001): 

Pr[𝑔(𝑥;𝐷) ≠ 𝑦] = |2𝐹(𝑥) − 1| Pr[𝑔(𝑥;𝐷) ≠ 𝑦𝐵] + Pr [𝑦𝐵 ≠ 𝑦] (43) 

Duda et al. states, “The classification error rate is linearly proportional to Pr[𝑔(𝑥;𝐷) ≠ 𝑦𝐵], 

which is the “Boundary Error”, since it represents the incorrect estimation of the optimal Bayes 

boundary” (Duda et al., 2001) (Friedman, 1997). Since each training set contains its own noise, 

the boundary error will change with the probability density of obtaining a specific discriminant, 

which is denoted as 𝑝(𝑔(𝑥;𝐷)) (Duda et al., 2001).  This boundary error is the captured by the 

area of the tail of 𝑝(𝑔(𝑥;𝐷)) on the other side of the Bayes discriminant value ½ (Duda et al., 

2001). In Figure 26, if the class from the normal population was being predicted, but the class 

was truthfully the abnormal population, the boundary error would be represented by the tail of 

the abnormal population, which is the area designated by b, which is the side opposite of the 

Bayes optimum. 
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Figure 26. - Representation of Boundary Bias (Dougherty, 2013) 

 

The formula for the area under this tail is given by the following formulation (Duda et al., 2001):  

Pr[𝑔(𝑥;𝐷) ≠ 𝑦𝑏] =

⎩
⎪
⎨

⎪
⎧� 𝑝�𝑔(𝑥;𝐷)�𝑑𝑔     𝑖𝑓 𝐹(𝑥) < 1/2

∞

1/2

� 𝑝�𝑔(𝑥;𝐷)�𝑑𝑔     𝑖𝑓 𝐹(𝑥) ≥ 1/2
1/2

−∞

� (44) 

Assuming that 𝑝(𝑔(𝑥;𝐷)) is Gaussian, the following bias, variance decomposition can be made 

(Duda et al., 2001): 

Pr[𝑔(𝑥;𝐷) ≠ 𝑦𝐵] = Φ�𝑆𝑔𝑛 �𝐹(𝑥) −
1
2
�
𝜀𝐷[𝑔(𝑥;𝐷)] − 1

2
�𝑉𝑎𝑟[𝑔(𝑥;𝐷)]

�

= Φ[𝑆𝑔𝑛 �𝐹(𝑥) −
1
2
� �𝜀𝐷[𝑔(𝑥;𝐷)]−

1
2
� 𝑉𝑎𝑟[𝑔(𝑥;𝐷)]−

1
2] 

(45) 
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In this case, the boundary bias is represented by 𝑆𝑔𝑛 �𝐹(𝑥) − 1
2
� �𝜀𝐷[𝑔(𝑥;𝐷)] − 1

2
� and the 

variance is represented by 𝑉𝑎𝑟[𝑔(𝑥;𝐷)]−
1
2 

The function designated by phi is the following (Duda et al., 2001): 

Φ[𝑡] = 1/√2𝜋� 𝑒−1/2𝑢2𝑑𝑢 = 1/2[1 − erf �
𝑡
√2
�]

∞

𝑡
 

erf(𝑢) =
2
√𝜋

� 𝑒−𝑥2𝑑𝑥
𝑢

0
 

(46) 

(47) 

The erf function that is used here is approximated by the following distributions.  

 
Figure 27. - erf function values (Duda et al., 2001) 

 

 Figure 28 shows the bias/variance decomposition in the framework of regression. The 

rows in the figure represent different training datasets. Moving from left to right, the bias 

decreases from columns a to b. In column a, the 𝑔(𝑥) function is fixed and is a poor estimate of 

the data, no matter which training set is used. Therefore, no matter what the true function 𝐹(𝑥) 

is, the function will remain fixed for each training set. In the last row, the bias is seen to be large 

for the first column, as the estimate is very poor. The variance in this case is zero, and the overall 

error loss function is completely dependent on the bias term. Column b is a slightly better 
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estimate than column a, even though it is still fixed and has zero variance. Prior knowledge was 

used to move this function closer to the true distribution of the data and thus the bias, and the 

overall error, has been decreased. The model in Column C is a cubic model with coefficients that 

can be trained and changed. The fit to the data is accurate and thus the bias is low. The model in 

column d is linear but certain parameters, including the intercept and slope have been estimated 

from the training data. It is not as flexible as the previous model due to the number of 

parameters, but it is better than the first two models. Therefore the model has a larger bias than 

the third model and a smaller bias than the first two models. However, due to its flexibility, this 

model and the third model propagate error through their variance terms. Having prior 

information, about the system being modeled and the mechanism that generates the data, that can 

be fed into this flexibility will help decrease both the bias and the variance.  Duda et al. explains,  

We can virtually never get zero bias and zero variance; to do so would mean that there is 
only one learning problem to be solved, in which case the answer is already known. 
Furthermore, a large amount of training data will yield improved performance so long as 
the model is sufficiently general to represent the target function (Duda et al., 2001).  
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Figure 28. - Regression Bias and Variance (Duda et al., 2001) 

 

 In contrast with the regression situation for bias/variance, the classification situation 

yields a different generalization for the propagation of the two types of error that will be entered 

in a loss function. In this case, for a two-class problem, samples are drawn from multivariate 

Gaussian distributions with two different covariance matrices and means. By considering the 

representation of the covariance matrices, the factor that is being changed across columns, with 

the left column being the lowest biased distribution representation with off-diagonal covariances, 

as this full covariance matrix can better estimate the distribution of the classes, while the middle 

column has zeroed covariances, and the rightmost column has identity covariance matrices, 

which is the least flexible, and thus highest biased,  the relationship between bias and variance in 

a classification context can be studied. Each row represents instances of the dataset that come 

from the truth distributions seen on top of the figure. Maximum-likelihood estimation was used 
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to estimate the parameters and thus separate the classes for a few data points from each class, 

with the resulting classifiers shown by the dashed lines. Duda et al. explains,  

Notice that most feature points in the high-bias cases retain their classification, regardless 
of the particular training set (i.e., such models have low variance), whereas the 
classification of a much larger range of points varies in the low-bias case (i.e. there is 
high variance). While in general a lower bias comes at the expense of higher variance, the 
relationship is nonlinear and multiplicative (Duda et al., 2001).  

 
Therefore, the regression situation is not exactly the same as the classification situation for 

decomposition.  

 The bottom of the figure shows three density plots that correspond with the different 

decision boundaries that are developed for many training sets. The gray noisy representation in 

the leftmost plot shows that there is a high variance in where those decision boundaries are 

drawn, while for the highest biased situation, the variance is low as the middle of the plot is more 

dense and black. The average of all of these decision boundaries in the left plot represents the 

most accurate representation of the true decision boundary, as the bias is low, and this fact is 

represented by the error histograms seen below. The rightmost plot average boundary would 

have a larger error, as there is a larger bias from the true boundary, and the error histogram is 

more peaked than the other two. In order to optimize the bias and variance in a classification 

context, there must be an adequate amount of data in a training set, which would shrink the 

amount of error for the given bias, and the number of parameters in the model must be adequate 

enough to have a good resolution. Duda explains,  

If a model is rich enough to express the optimal decision boundary, its error distribution 
for the large 𝑛 case (with decreased variance) will approach a delta function at 𝐸 = 𝐸𝐵, 
which is the Bayes error. To achieve the desired low generalization error it is more 
important to have low variance than to have low bias. The only way to get the ideal of 
zero bias and zero variance is to know the true model ahead of time, in which case no 
learning was needed anyway (Duda et al., 2001).  
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When n is increased in this case, in order to determine a classifier, more parameters need to be 

estimated for the model, which would by default decrease the bias. Prior knowledge must be 

used to find this adequate representation of the model, just like in the regression case.  

 
Figure 29. - Classification Bias and Variance (Duda et al., 2001) 
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III. Methodology 

Overview 

 The main thrust of this research effort is the fusion of different responses of interest with 

the input of Subject Matter Expertise using the hierarchical framework and ideas of Value 

Focused Thinking. This fusion of responses will be used to compare algorithms of similar 

assumptions and of similar computational complexity. While the amounts of responses and the 

types of responses can be manipulated from study to study, this framework can be used as a 

baseline methodology that can be used for further research in the realm of HSI data. This will 

provide a large benefit over the current, disjoint methodology of comparison, which includes 

comparisons via parametric and nonparametric tests that incrementally exhibit the benefit of the 

new algorithm or the incremental changes in the algorithms over the previous ones.  

 The research effort is divided into three main components. The first component is the 

application and utilization of the Value Focused Thinking Ten-Step Process to the problem of the 

quality of a hyperspectral anomaly detector in various settings. The second and third components 

are experiments that include the exercise of the completed hierarchy for the analysis and 

comparison of different algorithms and imaging data sets. The first experiment is a comparison 

of three basic supervised algorithms on a series of synthetically permutated images in order to 

verify the performance of the hierarchical response. The second experiment is focused on using 

the lessons learned in the first experiment and applying them to hyperspectral image data to 

understand whether the same results would hold up and the same alternative would be chosen 

under this different assumption of the level of data.  
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Value Focused Thinking  

The Value-Focused Thinking 10-Step Process was utilized to structure the responses that are of 

interest in a supervised classification context, and then ultimately in an HSI modeling situation, 

in order to choose the best alternative from a set of algorithms. This type of analysis allows the 

analyst to make decisions that are founded on logic and can be repeated for future research or 

applied to different alternatives. It also is a very transparent process that can be easily 

communicated and understood by Decision Makers and other analysts.  

 
Figure 30. - VFT 10-Step Process (Shoviak, 2001) 

 

An overview of the VFT process is as follows:  

Step 1: Problem Identification 

The first step in the VFT process is to fully understand the breadth and scope of the 

problem, in order to shrink the decision space to the context of interest. This problem definition 

helps make the decision process transparent, and it allows all of the participants a clear 
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understanding of what is expected. This includes defining a clear and impactful vision statement, 

an idea about the perspective of the problem, and the overall scope of the issue and what needs to 

be solved.  

Step 2: Creating the Value Hierarchy 

The value hierarchy is one of the main innovations and the structural backbone of the 

VFT process. It is the goal of the analyst to create a hierarchy that spans the decision space but 

also divides it independently. Therefore, it must be collectively exhaustive and mutually 

exclusive. These two properties ensure that the hierarchy is weighted correctly and precisely. 

The two main methods of developing this hierarchy are the top-down approach, which 

decomposes the problem into its values and objectives, and ultimately its measurements, and the 

bottom-up approach, which uses an exhaustive list of responses and the analyst attempts to 

combine them logically in groups that explain their merit. This is the approach that is done in this 

research. Value Hierarchies in this research were developed using Dr. Jeffery Weir’s Value 

Hierachy Excel Spreadsheet macro.  

Step 3: Developing Evaluation Measures 

The measures of the hierarchy represent the lowest row of the hierarchy that feed into the 

values. These measures are the ultimate objective measurements that must be empirically 

collected from the system or process that is under review. In the lexicon of VFT, each individual 

row of the hierarchy is known as a tier, and each of the groups of values and measures is known 

as a branch. These measures can be constructed from latent variables or can be directly 

interpretable from real-world phenomena. The dividing terms of measures are directly 

measurable, measured by proxy, on either a natural or constructed scale. The main goal is to 



74 

accurately describe the objective attainment of the value the measure is feeding into. The 

following is a list of the types of measures used in VFT.  

Table 6. - Types of Measures used in VFT 

 

Step 4: Creating Value Functions 

After the creation and determination of measures for attainment of each specific value, 

value functions must be created for assessing the relative importance of the levels within the 

measures. Depending on the measurement system for the measures and the type of data that is 

collected for that measure, the value functions can either be categorical or continuous. These 

value functions are functions that transform the empirical data into utility measurements that are 

of importance to the Decision Maker. Therefore, the DM must be interviewed to assess their 

preferences and their risk biases and these functions must be monotonically increasing from 0 to 

1 (Kirkwood, 1997). If this monotonic requirement were violated, utility preferences would be 

ambiguous, and it would be difficult to optimize the value measure to the best possible measure.  
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Figure 31. - Categorical and Continuous Value Functions 

Step 5: Weighting the Value Hierarchy 

After the development of the value functions, the individual values and measures must be 

weighed to enumerate their importance within the hierarchy. These should reflect the level that 

the measures help determine the actual value and each value weight should be reflective of how 

likely these values would lead to the overall determination of the alternative preference. Two 

different frameworks for calculating the weights can be used, local weighting and global 

weighting. The local weight of a value is the measure of importance for reaching the value in the 

tier directly above it. Global weighting is the overall importance of that value within the 

hierarchy, and these values can be analyzed to see if the ranking of values are slightly wrong or 

should be updated. Within the construct of local weighting, the weights that feed into the same 

node need to add up to one. It is an easy conversion to go from local to global weighting, as all 

of the local weightings along a branch should be multiplied together to calculate the global 

weight.  

Step 6: Generating Alternatives 

The generation of alternatives is an important step to the process and must be carried out 

repeatedly parallel to the main value hierarchy process. There are many ways to generate 
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alternatives from the values within the hierarchy and VFT allows a group the opportunity to both 

synthesize new alternatives and throw some out due to infeasibility or domination by other 

alternatives. If one alternative does not perform as well as another in all categories, it is 

considered to be dominated by that alternative. More information about generating alternatives 

has been covered in Chapter II.  

Step 7: Scoring Alternatives 

After the generation of feasible alternatives comes the calculation of the overall VFT 

value using the measures and value functions used within the hierarchy. For this research, after 

all response variables have been collected, they will be input into the hierarchy for each specific 

alternative. The output of the VFT value will be used to rank alternatives and assess their 

feasibility. A large amount of deliberation could be necessary in order to decide where each of 

the alternatives falls along the measure distributions.  

Step 8: Deterministic Analysis 

Deterministic Analysis stems from the scoring of the alternatives in Step 7. This is the 

combination of all of the alternative scores into one measure by taking the score of the individual 

evaluation measure one at a time and multiplying it by the global weight associated with that 

score. These are then added together to get the overall value for an alternative. It is a linear 

combination of global weight of the measure score and the actual score at the measure. This final 

measure can be compared against other factors outside of the hierarchy to see different 

relationships between alternatives and possibly generate other, new ideas for alternatives.  

Step 9: Sensitivity Analysis 

Sensitivity analysis is used to change the fundamental assumptions that are used in the 

model, such as the value functions and weightings, and see how the overall decision would 
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change for these tweaks of the model. This could show that the alternative choice is not 

generalized for all possible realities but only to the specific construct of the model. This is a type 

of meta-analysis that can both show the specificity of the choice in alternatives, and thus the 

robustness of that choice to random events that could change the weightings in the future, and it 

could help analyze the strength of the hierarchy, as stronger hierarchies should be more robust to 

slight changes. This is akin to the variance that occurs when a model fits to different training 

datasets. This step is useful in the Air Force, as often times, new leaders step into positions over 

analysts, and preferences for an alternative should be robust enough to fit nicely with those new 

DMs.  

Step 10: Conclusions and Recommendations 

This step is a communications and presentation based step that relies heavily on the 

ability to interpret and argue for the results of the analysis. These results are presented by the 

analyst to the Decision Maker, but should not be considered as the end-all answer to the problem. 

The Decision Maker should interface with the analyst in order to weight the alternatives against 

additional exogenous factors, such as cost and often time to complete these alternatives. At this 

step, other alternatives may be formulated using comparisons with similar already assessed 

alternatives (McGee, 2003).  

VFT Hierarchy 

Figure 32 is a representation of the Value-Focused Thinking Hierarchy that is used in this 

analysis. This hierarchy is utilized in order to provide a decision maker the means for making a 

valid, organized, though-out decision for choosing the correct classification algorithm that they 

need in each particular instance. The hierarchy is broken down into levels of values which 

constitute particular features that are of interest for the decision maker. These values can be 
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broken down further into additional levels for a higher resolution of clarification or broken down 

into measures that are objective measurements for certain variables that are estimated for the 

classification algorithms. These measures constitute the most important and highest leverage 

features of the algorithms that carry the most weight within the decision process. They also 

provide an easily accessed and interpretable measurement system that can be assessed to 

determine which features within the performance of the algorithm need to be improved or 

leveled with other features. For each individual measure, there is a weighting that is used per the 

subject matter experts opinion in order to provide subjective knowledge that helps judge the 

classification algorithm appropriately. Additionally to the weighting, there are value functions 

that determine the correct values that are assigned to each individual measurement’s 

performance. The following VFT Hierarchy will be used in this research. Each branch will be 

explained in further detail later in this chapter.  

 
Figure 32. - VFT Hierarchy 

First Experimental Design  

A set of two Multivariate normal sample populations were developed using random 

draws from the Multivariate normal distribution using Matlab. Within each individual trial, the 

two sample populations represented a set of Background pixels and Target pixels for a 

hyperspectral imaging anomaly detection problem. For each pixel, a reflectance vector was 
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simulated with the x-axis representing the reflectance within the first discretized wavelength, and 

the y-axis representing the reflectance of the pixel within the second wavelength. These sample 

background and target pixel populations were created by varying different factors and then 

placed in a table in order to estimate and optimize the effects of each individual factor on 

different response variables. Since this toy study is simulating the anomaly detection 

methodology for a true HSI problem, the factors are representative for such a problem.  

Experimental Factors 

The first factor is the actual classifier that is used. These include the Quadratic 

Discriminant Analysis classifier, the Classification Tree, and the Naïve Bayes classifier. The 

second factor is the Mahalanobis Distance factor, which represents the distance from the 

centroids of the target distribution to the background distribution. This factor was divided into 

Short and Long levels, with Short pertaining to distances less than 5 and Long pertaining to 

distances greater than 5. The second and third factors pertain to the Covariance matrices of the 

target and background, respectively. The Target covariance matrices will result in distributions 

that are most representative of targets in HSI data, making the distributions dense with less 

variance than the background. The Background covariance matrix makes the distribution result 

in a higher variance and less dense than the target. The angle that each distribution will face each 

other is also varied using these matrices. The final factor is the Percentage of Target Pixels. This 

factor is representative of the HSI image data, as targets are typically sparse in the data. The 

levels of this factor are 1%, 5%, and 10% of the total number of pixels. These factors are seen in 

the following table.  
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Table 7. - Classification Algorithm Alternatives 

 

Table 8. - Factors used in Experiment 

 

Figure 33 represents a sample problem of the Target distribution, in blue, and the Background 

distribution, in red. As stated previously, the target distribution will have significantly less pixels 

than the background distribution. The large black points in the figure represent the centroids of 

the distributions, and the Mahalanobis distance will be calculated between these two centroids.  
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Figure 33. - Target and Background Distributions 

 

Three different Supervised Classification Algorithms were used, including Quadratic 

Discriminant Analysis, Classification and Regression Trees, and Niave Bayes Classification. The 

responses that were collected included Computational Time and Effort values, True Positive 

Fraction (TPF), the False Positive Fraction (FPF), Sensitivity, Specificity, Accuracy, Precision 

(depending on context), a TPF and FPF Bias error value, a TPF and FPF Variance error value, a 

Domingos Classification Bias Error, a Domingos Classification Variance error, a k-fold Cross 

Validation Error value, and a Jackknife Cross-Validation Error value. Additionally, the value 

from the constructed Value Focused Thinking Hierarchy, after subjected to the value functions 

and weightings, was recorded for each combination.  These values were compared for each 

specific classifier, and an overall value was computed by weighing the Hierarchy Values by the 

number of pixels in the image, to assess contextual information.   
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Classification Algorithms 

The three classification algorithms used in this research are the Naïve Bayes Classifier, 

Classification Trees, and Quadratic Discriminant Analysis. These three algorithms were 

discussed in detail in Chapter 2, and these three plots are meant as examples. The first plot is an 

Example of the Naïve Bayes Classifier, which uses posterior estimates of class assignments 

based directly from prior distributions of probability estimates for each feature independently. It 

assumes the features are independent and calculates probability contours using the pdfs for each 

feature independently, which are computed around the centroid of the distribution. This can be 

seen in Figure 34.  

 
Figure 34. - Naive Bayes Classification 

 

 Figure 35 is a representation of the Classification Tree algorithm, which is comprised of 

nodes in which a decision is made based on the feature and the values of that feature that would 
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decrease the amount of information entropy the highest. Therefore, it divides the classification 

space into orthogonal class regions based on splits of the features.  

 
Figure 35. - Classification Tree Example 

 

 The final algorithm is the Quadratic Discriminant Classifier which utilizes the 

Mahalanobis distance between the two class distributions and calculates the likelihood that the 

point is either in one class or the other based on this distance. Therefore, the true covariance 

matrix of the class distributions is an integral part of the equation for the likelihood of class 

ownership. For various types of covariance matrices, which ultimately determine the shape of the 

distribution, the discriminant boundary will be different conic sections. This type of analysis has 

lower bias and higher variance than linear discriminant analysis, as the training sets that are used 

will determine the shape and location of the discriminant functions.  
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Figure 36. - Quadratic Discriminant Analysis 

Mahalanobis Distance 

 The following is a representation of the difference between Euclidean distance and 

Mahalanobis Distance. Euclidean distance around a mean in a multivariate distribution will be 

measured from by the radius of the circle of equal distance that surrounds the centroid to the 

point of interest. This is seen below. The main issue with this type of distance is that it does not 

incorporate the covariance between the dimensions in the distribution, and thus, acts as if the 

dimensions were independent. Therefore, to assess outliers, it cannot be determined that a point 

in one dimensional direction could have a different actual distance from the mean than the other 

direction, when accounting for the covariance. A point in the dimension with greater variability 

will be interpreted as being far from the mean, even though it may still be in the distribution. 

This is the naivety of the assumption of independence. The points A and B here are the same 

Euclidean distance from the mean.  
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Figure 37. - Euclidean Distance (Tomaselli et al., 2013) 

 

Mahalanobis distance accounts for this issue of distance from the mean in various directions by 

incorporating the covariance of the distribution within its calculation. Therefore, it does not 

assume that each dimension is independent, and for a two-dimensional case, equidistant points 

are now represented by ellipses with the axes corresponding to the variance in that direction. 

This allows the detection of outliers in one direction that may have been interpreted as the same 

distance when using the Euclidean definition. The points A and B here are the same Mahalanobis 

distance from the mean. This type of distance dilation is used primarily in the RX algorithm and 

its variants. The equation for Mahalanobis distance is the following (Tomaselli et al., 2013): 

𝐷𝑚(𝑥, 𝜇) = �(𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)𝑇 (48) 

where 

 Σ−1 is the inverse Covariance Matrix of the data 

 𝜇 is the mean of the distribution  

 𝑥 is the point of interest.  
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Figure 38. - Mahalanobis Distance (Tomaselli et al., 2013) 

Experimental Measures/Responses for the VFT Hierarchy 

 Transitioning back to the VFT hierarchy methodology, Table 9 represents the values and 

their associated responses for Computational Complexity and Classification Accuracy. Most of 

the measurements are natural and direct, although the Ease of Use measurement uses a 

constructed scale to define the level of triviality in the algorithm. 

Table 9. - Measures for Computational Complexity and Classification Accuracy 

 

The branch for Computational Complexity is divided into Ease of Use and Computation Time 

measurements.  
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Figure 39. - Computational Complexity Branch 

 

The branch for the Classification Accuracy value is split into three “means objective values”, 

which separate the use of the confusion matrix into three constituent parts (TPF/FPF Values, 

Error/Accuracy Values, and Sensitivity/Specificity Values) depending on the application that the 

analyst would like to work and deliver results to the Decision Maker in. This helps facilitate 

conversation and decreases the noise when briefing superiors. Each of these means objective 

values can be turned on or off and usually only one would be used in a typical application, as 

there is no real need to compare each of the measurements. This branch can be seen in Figure 40. 

The following graph depicts the confusion matrix for a two-class classification problem, 

with the predicted number of positive, negative, and total classifications across the column space, 

and the actual number of positive, negative, and total data points placed across the rows.  

Table 10. - Confusion Matrix 
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Additional measures that can be assessed within a two-class classification problem are found in 

the Table 11. They include an estimate of total error, accuracy, precision, and Sensitivity, which 

is equal to the True Positive Fraction for a two-class classification problem, and Specificity, 

which is the difference between unity and the False Positive Fraction.  

Table 11. - Confusion Matrix Formulae 

 

 Table 12 is a representation of the typical Matlab output for the Confusion matrix. True 

Positives (TP) are in the upper left element, while False Negatives (FN) are in the upper right 

element. In the bottom left element are False Positives (FP) and in the bottom right are True 

Negatives (TN).  

Table 12. - Matlab Confusion Matrix Output 
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The representation of the Classification Accuracy branch is seen below.  

 
Figure 40. - Classification Accuracy Branch 

 

The Algorithmic Error value branch is split into Generalization Error and Loss Function 

Decomposition Means Objective Values. The Generalization Error is computed using both K-

Fold Cross Validation Error, in which the K will be determined by quick preliminary testing, and 

Jackknife Cross Validation Error, in which each point is held out as the test set and the rest of the 

data is treated as training data to train the algorithm and predict that point. The amount of times 

that the point is misclassified is integrated as the error. For the Loss Function Decomposition, 

two types of decompositions were conducted, one based on posterior estimates of the TPF and 

FPF values, using an MSE Quadratic loss function that is typical in regression, and thus it treats 

the TPF and FPF value functions, along with the classifier, as part of the same function, which 

can be represented on a continuous scale. For the classification loss of classifying each 

individual point as target or background, Domingos’ unified decomposition for general loss 

functions will be applied. This comparison of loss function performance is a novel approach 
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taken in this research. Although there is some debate, I have determined that the Generalization 

Errors and Variances are all Natural, Direct measures, while the Biases are all Natural, Proxy 

measures, as the estimate of bias is in fact being used to determine the accuracy of the 

classification system using a difference between the expected parameter value and the optimum 

parameter value. This calculation of expected parameter value brings the measurement out of the 

direct framework to the proxy framework. Variance, however, is directly determined by the 

natural variation between the expected output and each individual output. These definitions are 

largely notional in this case and other interpretations may suffice.  

Table 13. - Measures for Algorithmic Error Response 
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The following figure is a representation of the Algorithmic Error Branch.  

 
Figure 41. - Algorithmic Error Branch 

Bootstrapping 

 A hybrid Parametric/ Non-Parametric bootstrapping approach will be utilized to generate 

results for the Loss Function Decomposition Means Objective Value. Parametric bootstrapping is 

the process of simulating a new set of feature data from the empirical distribution of the feature 

data and then using this simulated data to draw class or response data from the conditional 

distribution of (𝑦�|𝑥) where 𝑦� are the predicted classes for each data point in 𝑥. This is 

demonstrated in Figure 42, as data is first used to fit a model, and then the fitted model is 

sampled, with replacement, with new simulated data to generate a new estimate.  
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Figure 42. - Parametric Bootstrapping (Shalizi, 2011) 

 

 Non-parametric bootstrapping includes the upfront resampling, with replacement, of both 

the response values and the feature values. This in essence is treating the original set of data as if 

it were a complete population, and each new sampled data set is just a sample from the overall 

population, after which a parametric model can be applied to calculate a re-estimate of the 

parameter of interest. The difference between these two formulations is just a matter of the 

sequence of parameter estimation, with parametric bootstrapping having that estimation come 

before the simulation of the data, and non-parametric having it come after (Shalizi, 2011).  
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Figure 43. - Non-Parametric Bootstrapping (Shalizi, 2011) 

 

There is an additional methodology for bootstrapping known as residual re-sampling that 

holds fixed a deterministic function of feature input to class or response output and then adds the 

residual value that accounts for the stochastic noise by resampling it, with replacement, from the 

original conditional probability distribution. In this research, both the x and y values will be 

resampled, which is also known as bootstrapping the indices. This allows the maximum 

separation of the performance of the classification algorithm and associated confusion matrix 

parameter of interest from the performance of the resampling methodology.  

Cross-Validation  

Cross-Validation will be utilized for the measurement of generalization error to different sets of 

data. This process splits the original training set of data into different partitions in various ways. 

K-fold Cross-Validation is a way of splitting the training set into “folds” by partitioning it into K 
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different data sets. Each of these data sets will take turns as the test dataset in the classification. 

The rest of the folds will be used as training sets to train the algorithm. Once trained, error will 

be calculated by using this trained algorithm against the fold that is representing the test dataset. 

This is done for each fold and then each of these errors of misclassification percentages is 

averaged to calculate the measurement of error.   

 
Figure 44. - k-fold Cross-Validation (Raschka, 2015) 

 

Jackknife Cross-Validation will also be used. This is similar to K-Fold Cross Validation, but now 

the number of data points, 𝑛, is used as the number of folds, 𝑘. This means that each data point 

will be used as a test dataset while all of the other data is used to train the algorithm. The 

percentage of points misclassified will be used as the measure of error.  



95 

HSI Data  

 The data that has been vetted in these experiments is from a program known as the 

Hyperspectral MASINT Support to Military Operations program (HYMSMO) using the 

Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor. This experiment is a 

simulation of Airborne Reflective Emissive Spectrometer (ARES)  and specifically are part of 

the Forest Radiance I and Desert Radiance II experiments. The HSI data is taken at 210 different 

wavebands in the visible and IR ranges of the EM spectrum and the number of total pixels, target 

pixels, and neighborhood pixels have been counted and recorded. Various numbers of targets are 

present in each of the scenes and the target percentage of the percentage of number of target and 

neighborhood pixels to total pixels is recorded. Some of these targets are synthetically placed 

into the scenes. The actual images are displayed below. Images ARES1, ARES2, ARES3, 

ARES2D, ARES2F, ARES3D_10k, and ARES3F are used in the first HSI experiment. 

ARES1D, ARES1F, and ARES4F are used in the Validation experiment.  

Table 14. - ARES Image Factors 
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Figure 45. - ARES Images 1, 2, 3, 1D (Orloff et al., 2000) 
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Figure 46. - ARES 1F, 2D, 2F, 3D10K (Orloff et al., 2000) 

 
Figure 47. - ARES 3F, 4F (Orloff et al., 2000) 

Factors for HSI Data Experiment  

 In order to make the VFT hierarchy values more representative to real world scenarios, 

an experiment will be carried out using the same three algorithms as before but now on ARES 

images. Principal Component Analysis will be used for Feature Extraction to reduce the number 
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of features from the 210 bands in the images. The Supervised Classification Algorithms will then 

be applied to the image data and the same responses will be collected as before, which will be 

entered into the VFT hierarchy. A post-processing weighting will be used to determine the final 

value that will determine which algorithm performed most satisfactorily, and thus, in VFT 

parlance, is the best alternative.  

Table 15. - HSI Data Experiment 

 

Application of Various Bias/Variance Frameworks for Classification 

 In this analysis, the goal is to compare and contrast various frameworks for the bias and 

variance decomposition of a loss function in terms of Mean Squared Error and in the Zero-One 

loss function for classification. The main sub-goal is to determine a optimum computation to 

enter into the Value Focused Thinking methodology for comparing supervised classifiers.  

 There have been many formulations for the bias and variance decomposition of loss 

functions in both regression and classification situations. Within the regression framework, the 

Mean-Squared Error Composition works best as it is somewhat simple to breakdown the MSE 

loss function in terms and bias and variance. In classification, it has been a bit more difficult and 

many formulations have been postulated.   These include Friedman’s formulation and 

Domingos’ formulation (Friedman, 1997) (Domingos, 2000). An additional formulation for the 
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True Positive and False Positive Fractions using the traditional decomposition of the quadratic 

Mean Squared Error loss function has been developed herein. Matlab has been used on a few toy 

situations to compare these bias/variance calculations for classification.  

Conceptual Definitions 

 The idea of bias stems from the intuitive idea of accuracy of a classifier. Within a certain 

data set, there is a target that must be reached in terms of fitting some parameter and having it 

fall near a pre-specified value. This is akin to the situation of playing darts. The player has an 

optimum target that they are reaching for, which in some cases is the bull’s-eye. The distance 

that the player’s throw of the dart lands away from the bull’s-eye can be thought of as the bias in 

the system of the thrower’s mechanics. In this sense, the bias is the error due to the difference 

between the expected prediction and the correct value that is being approached. For one instance 

of a training set and the resulting model analysis of the training set, only one distance is 

calculated from the target. When multiple training sets, as in bootstrapping, are used to train the 

model, the average distance is used away from the target. This target can either be comprised of 

an a priori probability of the prediction of certain combinations of features in the feature matrix 

or it can be some target that some estimation is attempting to approach. Such targets would 

include 1 in terms of True Positive Fraction or 0 in terms of False Positive Fraction. The 

randomness that is inherent in the data sets is what creates a range of predictions, making the 

process stochastic in nature and not deterministic. If the same training set was used for each 

replication, and the modeling algorithm had no random components, then the process would be 

deterministic.  

 The idea of variance can be thought of as the precision of the distribution of model 

estimates. In terms of the dart throwing example, the precision is how closely each throw of the 
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dart lands from one another when considering some target that the thrower is attempting to hit. In 

a classification setting, the algorithm will be trained on multiple training sets. When each unique 

combination of feature variable values is used to estimate the class of the data point, the variance 

arises in terms of how closely packed the estimated classes are. Since in a classification setting, 

the zero-one loss function is used to determine if the correct class has been calculated, the 

situation is slightly different from regression that has a continuous response variable, and thus an 

idea of distance between estimations. However, in terms of the posterior probabilities that a 

certain class has, the variance can be thought of as the precision between the different 

probabilities. If one class is being predicted a lot more than another class, even though the prior 

probabilities for those classes are close together, there would be large bias in that one case. If 

there are large fluctuations for the posterior probabilities of the class estimations, then there 

would be large variance for those points. For TPF and FPF, the idea is a bit more natural, as there 

will be an idea of precision based on the variance of the fractions that are generated. If these 

fractions change from training set to training set, the variance will be higher. Duda et al., states,  

Given that there is no general best classifier unless the probability over the class of 
problems is restricted, practitioners must be prepared to explore a number of methods or 
models when solving any given classification problem. The bias measures the accuracy 
or quality of the match: high bias implies a poor match. The variance measures the 
precision or specificity of the match: a high variance implies a weak match (Duda et al., 
2001).  
 

 In terms of model fitting, there is a trade off of bias and variance due to the number of 

parameters that are used in the model and the flexibility the model has for predicting the classes 

of the unique feature space combinations. Domingos observed that both flexible learners with 

complex representations of parameters and basic learners are both seen to perform well in certain 

experiments, and sometimes these simple learners outperform the more complex ones. He states, 

“In recent years the reason for this has become clear: predictive error has two components, and 
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while more powerful learners reduce one (bias) they increase the other (variance). The optimal 

point in this trade-off varies from application to application” (Domingos, 2000). Analysis must 

be done in order to determine the optimum settings to trade off the probability of fitting each 

point exactly, which would be the bias portion of the error, and the ability for the model to 

generalize to other additional data sets, so it does not over-fit to one particular, unique data 

representation. When bias is decreased, the model is more flexible, and can fit each future data 

point well, however the variance will be increased, as that instance of the model will not be able 

to fit other future data sets well. On the other hand, when variance is decreased, the expected 

classification will have a larger discrepancy from the actual classification, but the model will 

perform better on the whole when exposed to many different data sets. Duda et al. reveals, 

“Designers can adjust the bias and variance of classifiers, but the important bias-variance relation 

shows that the two terms are not independent; in fact, for a given mean-square error, they obey a 

form of ‘conservation law’” (Duda et al., 2001).  

Bias and Variance for Regression (and TPF/FPF Values) 

The breakdown for bias and variance for regression is seen in the following formulae 

(Kuncheva, 2004) (Duda et al., 2001): 

𝜀𝐷[(𝑔(𝑥;𝐷) − 𝐹(𝑥))2] = (𝜀𝐷[𝑔(𝑥;𝐷) − 𝐹(𝑥)])2 + 𝜀𝐷[(𝑔(𝑥;𝐷) − 𝜀𝐷[𝑔(𝑥;𝐷)])2] 

𝐹(𝑥) = 𝐸[𝑦|𝑥] 

𝑏𝑖𝑎𝑠2 = (𝜀𝐷[𝑔(𝑥;𝐷) − 𝐹(𝑥)])2 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜀𝐷[(𝑔(𝑥;𝐷) − 𝜀𝐷[𝑔(𝑥;𝐷)])2] 

(49) 

(50) 

(51) 

(52) 

where  

 𝐷 is an instance of a training data set 

            𝑔(𝑥;𝐷) is the model estimate of the specific 𝑥 vector in the data set 𝐷 
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This representation will be used in this research for an approximation of TPF and FPF values by 

considering each 𝐷 to be a bootstrapped sample from the original distribution of data. For TPF, 

the 𝐹(𝑥) value will be represented by the optimal value of 1, and for FPF, 𝐹(𝑥) will be 

represented by its optimal value, which is 0.  

Domingos’ Formulation  

Pedro Domingos redefined the bias/variance decomposition for an arbitrary loss function, 

and showed that the decomposition specializes to the standard one for the squared-loss case, and 

to one that is similar to the Kong and Dietterich decomposition for the zero-one function (Kong 

et al.,1995). Domingos states that each of the previously published decompositions in the 

literature for the zero-one loss function is flawed. He states,  

None has a clear relationship to the original decomposition for squared loss. One source 
of difficulty has been that the decomposition for squared-loss is purely additive (i.e., 
loss=bias+variance), but it has proved difficult to obtain the same result for zero-one loss 
using definitions of bias and variance that have all the intuitively necessary properties. 
Here we take the position that instead of forcing the bias-variance to be purely additive, 
and defining bias and variance so as to make this happen, it is preferable to start with a 
single consistent definition of bias and variance for all loss functions, and then investigate 
how loss varies as a function of bias and variance in each case (Domingos, 2000).  
 

Therefore, Domingos is attempting to flip the logic from trying to find bias and variance terms 

that match up exactly with the MSE function to definitions that could be set up to yield various 

types of loss functions. This is desirable since a bias-variance tradeoff issue exists in any form of 

generalization problem, and thus if Domingos succeeds, he can apply this idea to any logically 

sound loss function.  

 Domingos defines various definitions for different concepts that he uses to build his 

unified decomposition. He applies the loss function 𝐿(𝑡,𝑦), where t is the true value for the 

certain x vector prediction, and y is the actual prediction using the classifier function. The first 

definition is for the concept of a main prediction. 
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Definition 1- Main Prediction:  

The main prediction for a loss function L and set of training sets D is 

𝑦𝑚
𝐿,𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑦′𝐸𝐷[𝐿(𝑦,𝑦′)]. (53) 

 

Domingos states,  

The expectation is taken with respect to the training sets in D, i.e., with respect to the 
predictions y produced by learning on the training sets in D. Let Y be the multiset of these 
predictions. (A specific prediction y will appear more than once in Y if it produced by 
more than one training set) (Domingos, 2000).  
 

Domingos explains the idea of main prediction as thus, “The main prediction is the y’ value 

whose average loss relative to all the predictions in Y is at a minimum. It is the prediction that 

“differs least” from all the predictions in Y according to L” (Domingos, 2000). In squared loss, 

this is the mean of the predictions, in absolute loss, it is the median, and under the zero-one loss 

it is the mode. It represents the “central tendency” of the learner. The next definition is for bias.  

Definition 2- Bias:  

The bias of a learner on an example x is 𝐵(𝑥) = 𝐿(𝑦∗,𝑦𝑚), where 𝑦∗ is the optimal 

prediction, and 𝑦𝑚 is the main prediction. This bias is the loss that is measured when the main 

prediction is compared to the optimal prediction. The next definition is the variance.  

Definition 3- Variance:  

The variance of a learner on an example x is  𝑉(𝑥) = 𝐸𝐷[𝐿(𝑦𝑚,𝑦)]. The variance is the 

average loss that is measured by the actual predictions relative to the main prediction. For all 

examples, the bias and variance can be averaged, and represented as 𝐸𝑥[𝐵(𝑥)] and 𝐸𝑥[𝑉(𝑥)]. 

The following definition is for noise.  
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Definition 4- Noise:  

The noise of an example 𝑥 is 𝑁(𝑥) = 𝐸𝑡[𝐿(𝑡,𝑦∗)] This is the part of the loss that is 

representative of the stochastic noise and is not dependent on the training set or learning 

algorithm.  For most loss functions, these three values can be combined in the following formula. 

𝐸𝐷,𝑡[𝐿(𝑡,𝑦)] = 𝑐1𝑁(𝑥) + 𝐵(𝑥) + 𝑐2𝑉(𝑥) (54) 

 

The 𝑐1, 𝑐2 values are multiplicative factors that will be different for various loss functions. 

For the quadratic loss function, this equation is valid as shown in the following theorem.  

Theorem 1 – Squared Loss:  

Equation 54 is valid for squared loss, with 

   𝑐1 = 𝑐2 = 1 

𝑦∗ = 𝐸𝑡[𝑡] 

𝑦𝑚 = 𝐸𝐷[𝑦] 

𝐸𝐷,𝑡[(𝑡 − 𝑦)2] = 𝐸𝑡[(𝑡 − 𝐸𝑡[𝑡])2]+(𝐸𝑡[𝑡] − 𝐸𝐷[𝑦])2 + 𝐸𝐷[(𝐸𝐷[𝑦]− 𝑦)2] 

            𝑁𝑜𝑖𝑠𝑒 = 𝐸𝑡[(𝑡 − 𝐸𝑡[𝑡])2] 

              𝐵𝑖𝑎𝑠2 = (𝐸𝑡[𝑡] − 𝐸𝐷[𝑦])2 

         𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝐸𝐷[(𝐸𝐷[𝑦]− 𝑦)2] 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

Domingos’ explains that this definition can now be used for classification, “We now show that 

the same decomposition applies to zero-one loss in two-class problems, with 𝑐1reflecting the fact 

that on noisy examples the non-optimal prediction is the correct one, and 𝑐2 reflecting that 

variance increases error on biased examples but decreases it on biased ones” (Domingos, 2000). 

This issue reflects the multiplicative issue that has been seen for other decompositions of the 

zero-one loss function, in which the direction of the bias has an impact on how variance affects 
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the error. For this theorem, 𝑃𝐷(𝑦 = 𝑦∗) is the probability over the training sets in D that the 

learner predicts the optimal class for x. 

Theorem 2 – Zero-One Loss:  

Equation 54 is valid for zero-one loss in two-class problems, with: 

                          𝑐1 = 2 ∗ 𝑃𝐷(𝑦 = 𝑦∗) − 1 

 𝑐2 = 1 if 𝑦𝑚 = 𝑦∗, 

                                                   𝑐2 = −1 otherwise 

(62) 

(63) 

(64) 

About the uniqueness of the variance function, Domingos states,  

The fact that the variance is additive in unbiased examples but subtractive in biased ones 
has significant consequences. If a learner is biased on an example, increasing variance 
decreases loss. This behavior is markedly different from that of squared loss, but is 
obtained with the same definitions of bias and variance, purely as a result of the different 
properties of zero-one loss” (Domingos, 2000).  
 

This means that there is a much higher tolerance for variance and it should be treated differently 

in these classification situations. This is because the increase of average loss that is a product of 

variance when dealing with unbiased samples is somewhat offset by the decrease when dealing 

with biased samples. Additionally, the 𝑐1 value leads to another difference between quadratic 

loss and zero/one loss functions, in that in quadratic loss, the noise will always increase the 

overall error, but in zero-one loss, when the predicted class is not the optimal class, increasing 

the noise value actually decreases the overall error, and it is thus desirable to increase the noise 

to make better predictions in these situations (Domingos, 2000). 



106 

IV. Results and Analysis 

Value Focused Thinking  

The Value-Focused Thinking 10-Step Process was utilized as a methodology to select the best 

algorithm out of a set of three alternatives spanning the field of pattern classification. This type 

of analysis allows the analyst to make decisions that are founded on logic and can be repeated for 

future research or applied to different alternatives. It can easily be modified for different 

algorithms and different measures. It also is a very transparent process that can be easily 

communicated and understood by Decision Makers and other analysts. The process, once again, 

is shown below.  

 
Figure 48. - VFT 10-Step Process (Shoviak, 2001) 
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Step 1: Problem Identification 

The first step of the process is the scoping and understanding of the problem. In the 

previous chapters, the HSI target detection problem has been well flushed out and this 

understanding of the problem will be used for the formal analysis. Keeney states that developing 

vision statements, perspectives, and delineating the scope of the problem will allow the analyst to 

keep an eye on the values within the system. These three items are seen below. 

 Vision statement: Be able to effectively detect target from background pixels using 

classification algorithms to provide the most accurate and useful information to a 

decision maker in a timely manner. 

 Perspective: The perspective that will assess the accuracy and usefulness of the detector 

will be an interested decision maker that has a stake in target detection. This will vary per 

situation. SMEs will ultimately let me know if the parameters and the certain type of 

detector is useful per the situation. 

 Scope: This research focuses on a few types of detecting methodologies. The problem 

will be analyzed the problem in terms of variance and bias reduction for regression 

and classification, usefulness for the user, and classification accuracy in different 

frameworks. 
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Step 2: Creating the Value Hierarchy 

 As observed previously, a hierarchy was developed that encapsulates both the values and 

measures of interest in this study. The hierarchy would then be weighed for each individual 

image per the three classifiers and combined using a weighting. This methodology is seen below. 

The weighting is reflective of the contextual information that is seen in the image. This is akin to 

ranking the images per the situation or the criticality in the scenario, which often happens during 

real target detection situations.  

 
Figure 49. - VFT Image Weighting Process 

 

A quicker way to accomplish this process is to take the medians of the values for certain factor 

combinations. This decreases the size of the problem, as it folds over on the images and only 

provides an output for a certain factor combination. In this study, the target pixel percentage and 

Mahalanobis distance levels were used to generate median image values and then were put 

through the hierarchy.  
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Step 3: Developing Evaluation Measures 

The SME had told me to rank the TPF Measure higher than the FPF measure, but the 

sensitivity of the FPF measure and the accuracy and precision of its calculation was of a higher 

concern. This is why, paradoxically, the TPF Measure is weighted larger than the FPF measure, 

but the FPF Bias and Variance are weighted larger than the TPF Bias and Variance. This makes 

sense in the HSI setting as groups of pixels that are labeled falsely as targets will only appear in 

certain images taken of the same area and thus, there is an inherent bias/variance of the existence 

of a False Positive in the image. By keeping this value as low as possible, the FPF measure 

should also be held as low as possible.  

Step 4: Creating Value Functions 

 Value functions were created with the use of SME input. These are shown below as well 

as in Appendix A.  

 
Figure 50. - Ease of Use Value Function 
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Figure 51. - Computation Time Value Function 

 

Step 5: Weighting the Value Hierarchy 

The hierarchy was weighted both globally and locally using a by branch and tier 

weighting that allowed the decision maker to provide input to what value or measure was more 

important across only a few values and measures. Figures 52 to 57 show the Global and Local 

weightings for each branch of the hierarchy. 

 
Figure 52. - Global Weights - Computational Complexity 
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Figure 53. - Global Weights - Classification Accuracy 

 

 
Figure 54. - Global Weights - Algorithmic Error 
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Figure 55. - Local Weights - Computational Complexity 

 

 
Figure 56. - Local Weights - Classification Accuracy 



113 

 
Figure 57. - Local Weights - Algorithmic Error 

 

These weights were then ordered and analyzed to understand if any weights were out of 

proportion with the other values or measures in terms of importance. These weights would then 

need to be reweighed which is not a difficult process. The weights that were determined in this 

case were reflective of the importance of all of the variables involved. These can be seen below. 

The following table features the local and global weights for the values. Global weights can be 

derived from local weights by multiplying down branches.  
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Table 16. - Local and Global Weights for Values 

 

The measures were also weighted with the same local and global weighting procedure. The most 

weight has been placed on the TPF measure while the least weight is placed on the classification 

bias and variance, as they are fairly new procedures with a large amount of uncertainty. The 

weights can be changed as more insight is developed.  

Table 17. - Local and Global Measure Weights 
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The following table shows the global weights and their rank per the tier for the values. This table 

is in order of overall global weight. It shows the fact that algorithmic error is weighted the 

highest amongst the three main branches.  

Table 18. - Global Tier Rankings 

 

The next table shows the ranks of the measures in terms of global weights. The TPF measure is 

weighted the highest as it is representative of the main goal of target detection, that of actually 

detecting targets when the pixels are indeed targets. The classification variance and bias are 

ranked on the bottom, as they are experimental techniques that need to be assessed. The color 

scheme is seen in the following table.  
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Table 19. - Global Measure Rankings 

 

Table 20. - Color Representation in Tables 

 

 

Step 6: Generating Alternatives 

As previously covered, alternative classification algorithms, QDA, Naïve Bayes, and 

CART were chosen to be representative of the whole of pattern classification research. Other 

algorithms could be chosen with different parameters as needed.  

Step 7: Scoring Alternatives 

Alternatives were scored using the measures and methods seen in the previous 

methodology chapter. In this case, the median of the factor combinations were used to assess the 

alternative score. Various different tactical decisions had to be made when scoring the 

alternatives and generating the actual value for the measures. These included removing certain 
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data runs due to their inability to be classified well by the classifiers. Some of the points with 

large Mahalanobis distances are uninteresting problems and can be discarded as any of the 

classifiers can arbitrarily classify them well. This idea can be seen the following matrix plot of 

the biases and variances that were generated. As the Mahalanobis distance increased, the bias 

and variance shrinks to zero, as the classifier will always classify the problem well. There is a 

cutoff at around 10 where the bias and variance reach a level that is effectively small.  

 
Figure 58. - TPF/FPF Bias/Variance vs. Mahalanobis Distance 

 

Additionally, when assessing the Misclassification Rate across various folds of the k-fold 

Cross Validation methodology, it was of interest to see which fold number would result in the 

lowest MCR rate. These MCR rates were calculated for different target pixel percentage levels 

(1%, 5%, 10%), which was a significant factor. The 1% level resulted in the lowest MCR rate. It 

was determined that there was no significant difference across the folds, and the lowest amount 

of folds necessary can be used in this scenario. The default of 10 could also be used.  
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Figure 59. - Misclassification Rate vs. Target Pixel Percentage and Fold Number 

 

An assessment of the jackknife MCR was also accomplished for the three different 

classifiers. Figure 60 shows the MCR rates for each image from 0 to 243. It was seen that as the 

number of target pixels increased, the MCR rate also increased. This happened across all of the 

algorithms. 

 
Figure 60. - Jackknife Misclassification Rates 
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Other tactical decisions that had to be made were the size of the tree and where to prune the tree 

and the methodology to prune the tree in order to avoid over-fitting. This was assessed for MCR 

at level of trees and at minimum leaf node sizes.  

 
Figure 61. - TPF, FPF vs Pruning Level 

 

 
Figure 62. - TPF, FPF vs. Leaf Size 
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A pruning level of five was chosen to be adequate to avoid over-fitting. 

In order to collect the biases and variances using Domingos’ formulation, a parametric 

bootstrapping technique was accomplished. This fit the overall run distributions with the 

parametric classifier first and then this fit was tested with random generations of data from the 

same distributions that were used in the first fit. The fit using these random points, which 

represent different instances of sample reality from an underlying true population, were then 

tested on a grid of points. This idea is seen below.  

 
Figure 63. - Domingos Bias/Variance Methodology 

New fits of these sample truths were then created and the differences for each of these data 

points from each truth was used to determine bias and variance. This was then integrated across 

all points in the grid in order to get a result for the bias and variance.  
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Figure 64. - Domingos' Boundary Error 

The overall scoring of the alternatives for the computational complexity measures is seen in 

Table 21 and Figure 65. CART had the fastest times while QDA had the slowest.   

Table 21. - Computational Complexity Measures 
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Figure 65. - Computation Time Comparion 

 

The values for the measures for classification are shown in Table 22 and a comparison of FPF 

Measures is shown in Figure 66. For the Long level of the Mahalanobis Distance factor, each 

algorithm resulted in 0 FPF. For the Short level, QDA outperformed CART at the 1% and 10% 

levels. Naïve Bayes resulted in an improvement at the 1% and 5% levels.  

Table 22. - Classification Accuracy Measures 
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Figure 66. - FPF Measure Comparison 

 

The algorithmic error measure values are shown in Table 23 and the K-fold and Jackknife Cross-

Validation error measures are shown in Figures 67 and 68 respectively. CART outperformed 

both NB and QDA in both measures. Jackknife resulted in slightly less error than k-fold.  

Table 23. - Algorithmic Error Measures 
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Figure 67. - K-fold Cross Validation Error Comparison 

 

 
Figure 68. - Jackknife Cross Validation Error Comparison 
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TPF Bias/Variance comparisons are shown in Figure 69 and FPF Bias/Variance comparisons are 

shown in Figure 70. Again, values are split for both Mahalanobis distance and target percentage 

factors. CART performs well in each of these measures. QDA performs well for TPF Variance 

but maintains some bias. NB is shown to have variance at the 5% and 10% levels and also 

maintains bias at these levels. The variance values are shown to be very small and could be 

operationally insignificant.  

 
Figure 69. - TPF Bias/Variance Comparison 

 

For FPF Bias and Variance, NB has a consistent bias across each short level at around 0.1 while 

QDA has a relatively large bias at the 1% target pixel percentage level. QDA performs well for 

5% and 10% but has a large variance for 1%. This could be due to the QDA algorithm predicting 

close to all positives when there are less target pixels present. CART still is shown as the best 

option in these cases. The FPF Variance is larger in value than the TPF Variance.  
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Figure 70. - FPF Bias/Variance Comparison 

 

The Domingos’ Bias/Variance comparison is shown in Figure 71. This methodology shows that 

NB is the best performing algorithm and CART now is shown to have bias. Interestingly, the 

long Mahalanobis distances are now registering positive biases and variances, which could be 

due to the non-parametric bootstrap approach. Also, CART performs the worst in this situation in 

terms of bias, which could mean that each tree that is being built is resulting in different 

decisions for the border pixels. NB has more variance than the other two algorithms, even though 

it has the least bias. This seems to show that NB is adept to fitting fairly accurate decision 

boundaries, but they change from situation to situation at a higher rate than the other algorithms. 

The Domingos’ variance is similar to the variance observed for the FPF values.  
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Figure 71. - Domingos' Bias/Variance Comparison 

 

A listing of results for the comparison of Domingos’ Bias/Variance values to TPF and FPF bias 

and variance values for all image cases are shown in Appendix B. FPF bias is always the highest 

amount of bias observed for each algorithm. This is due to some runs being classified as all 

background when the target percentage or Mahalanobis distance is small, which results in higher 

FPF values. The Domingos’ variance values seem to be larger than either TPF or FPF values 

when accounting for all of the runs, which is not apparent when simply looking at the median 

values.  

Step 8: Deterministic Analysis 

All of the algorithms were ranked per the pixel percentage and the Mahalanobis 

distances. It was seen that CART always outperforms the other algorithms in each situation, 

although there is a dropoff in performance from long to short distance. QDA is always the worst 

performing algorithm, primarily due to its generalizability capability (although in all of the 

examples, the distributions had positive covariances). The analysis in the previous step showed 
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why QDA performed at a lower level than the other algorithms, especially in computation time, 

FPF Variance, and TPF Bias.  

Table 24. - Aggregated Hierarchy Values 

 

Figure 72 shows the significant difference between long and short Mahalanobis distance levels 

and the fact that CART is outperforming the other two algorithms in each case.  

 
Figure 72. - Hierarchy Values per Target Pixel Percentage and Mahalanobis Distance 
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The following figures are breakdowns of the value quantities for each algorithm in each different 

factor combination. They are useful for visualizing the areas that the algorithms outperform the 

others in. For example, for the first case of 1% Target Pixels and Short Mahalanobis distance, 

CART outperforms the other two algorithms in computation time, while NB outperforms the 

others in TPF measure. Additionally, QDA performs poorly in this case in terms of FPF bias 

which is driving the overall hierarchy value down. Also, CART is the only algorithm to show a 

value for FPF variance, which adds to its quality. Therefore, the largest discriminators are 

computation time, FPF bias, and FPF variance. If these measures are disproportionally affecting 

the value of the algorithm, the DM may decide to change the weight or value functions 

associated with the particular measures.  

 
Figure 73. - Hierarchy Values for 1% Target Pixel Pct and Short Mahalanobis Dist 
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Figures 74 through 78 show a similar breakdown of the value scores for each particular measure.  

 
Figure 74. - Hierarchy Values for 1% Target Pixel Pct and Long Mahalanobis Dist 

 

 
Figure 75. - Hierarchy Values for 5% Target Pixel Pct and Short Mahalanobis Dist 
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Figure 76. - Hierarchy Values for 5% Target Pixel Pct and Long Mahalanobis Dist 

 

 
Figure 77. - Hierarchy Values for 10% Target Pixel Pct and Short Mahalanobis Dist 
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Figure 78. - Hierarchy Values for 10% Target Pixel Pct and Long Mahalanobis Dist 

 

Step 9: Sensitivity Analysis 

Sensitivity analysis was accomplished for the algorithms and it was seen that most of the 

measures were robust. This is seen below as CART is always the best across all ranks. 

 
Figure 79. - Classification Bias Local Sensitivity Analysis 
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Step 10: Conclusions and Recommendations 

From this methodology, it is obvious that CART performs the best. However, this is most 

likely due to the difficulty of the problem and the separation that CART can create between 

classes.
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V. Conclusions 

 This research is a look into a more robust, transparent, and informative methodology for 

comparing the performance of pattern classification and hyperspectral imaging algorithms to 

gain insight about how each algorithm performs under certain problem difficulty and 

assumptions. The comparison of types of biases and types of cross-validation provides a useful 

framework for decisions in these areas. The utilization of the value-focused thinking process is 

an additional benefit that could provide analysts and decision makers a logical and speedy 

process to combine subjective and objective measurements in deciding which path they may take 

during a project.  

Original Contributions 

 1. Developed a unique value hierarchy for comparison of different algorithms and carried 

the analysis through the ten steps to provide an example of how this process can be applied to 

technical decision making. 

2. Provided a comparison of user complexity measures, systematic classification accuracy 

measures, and algorithmic generalization error decomposition measures to synthesize an overall 

value based on the inputs of both the decision maker and the performance of these algorithms 

using parametric and non-parametric bootstrapped estimates.  

3. Provided a comparison and analysis of jackknife and k-fold cross-validation 

performance for training and testing an algorithm on basic two-distribution data sets. 

4. Examined the differences between bias and variance estimates for different loss 

functions, including a quadratic loss function decomposition and a zero-one loss function 

decomposition and used both results to help inform a decision. 
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Limitations 

 There are a few limitations in this research that simplify the problem from what you 

would see in a real HSI data experiment. The data that was used for this research was a 

rudimentary representation of true HSI data and each individual problem was not completely 

representative of the complexities of true data. While the VFT hierarchy could remain in the 

structure that is exhibited in this research, it could take a willing and talented analyst some time 

and thought to reform each individual measurement for different algorithms and different types 

of datasets with various levels of assumptions. The assumptions that were utilized in this 

research would need to be manipulated and strengthened or loosened for other analytical efforts.  

 Additionally, within the process of collecting bias and variance estimates, samples were 

deleted if they did not result in class distributions that had both target and background classes 

apparent. This was a reflection of the difficulty and level of information contained in the 

problem. In real empirical samples, this lack of well-shaped data may not be present, and other 

ways of combating this problem may need to be developed. The formulation for the non-

parametric bootstrap was based on treating each unique 𝑥 vector and corresponding class label as 

one case and bootstrapping the individual cases. This may not be the optimal bootstrap 

formulation for reducing the bias of these parameters. 

 One other issue is the development of the grid for the Domingos’ Error Decomposition 

problem, which is optimized for a two-dimensional problem, would need to be adjusted for a 

higher dimensional problem. One solution to this issue is to collect a fraction of the grid points 

but in higher dimensionality, which would maintain the computational cost of the problem.  
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Suggestions for Future Research 

 For future research, this methodology should be expanded to other sets of data and more 

complex algorithms. Decisions would need to be made for which order feature extraction and 

selection steps should be performed and which measures should be utilized. Any type of HSI 

data could be used for the subject of evaluation for the hierarchy. The individual utility value 

curves could be coded in a statistical software language to quickly assess the overall hierarchy 

values for each image. This can be compared to the use of the medians for each different factor 

level combination to see if these results remain the same.  

One of the main advantages to the VFT methodology is the fact that it is flexible and 

modular for different problems and different decision makers. New decision makers should be 

surveyed to understand how the methodology would change for their inputs and the measures 

would be updated accordingly. The three basic branches for analysis could remain the same as 

they test the three most impactful measurements for the quality of the algorithms. More testing 

and validation should be accomplished at each increase of problem complexity to ensure that the 

weights used are still applicable.  

Conclusions 

 This research was used as a way to fuse the quality assessment of many different images 

together using a value-focused hierarchy to determine the best algorithm to use in a certain 

situation. At times, a fusion of various different algorithms may provide better performance than 

a single classifier. This type of work has been accomplished before, and this value hierarchy can 

be modified to be used with different algorithms fused together. Additionally, the complexity of 

the hierarchy can be increased and decreased with the advice of the analyst and the decision 

makers in the process. Much like in previous research, different perspectives could change the 
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values and measures that are utilized within the hierarchy. The fusion of these different opinions 

could further strengthen the value of the output of these hierarchies. Additionally, different types 

of loss function decompositions could be utilized and analyzed for each different type of 

problem. Most of the measurements in this research were notional and chosen due to the 

uniqueness and newness of the type of analysis. In the real world, uniqueness may not be as 

critical of an objective and each analysis team must get together after careful deliberation to 

decide upon the values and measures of interest. Although CART was seen as the optimum 

algorithm for these test sets, it may not be the algorithm of choice for more complex problems. 
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Appendix A. Value Functions for Measures  

 
Figure 80. - Ease of Use Value Function 

 
Figure 81. - Computation Time Value Function 
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Figure 82. - TPF Measure Value Function 

 

 
Figure 83. - FPF Measure Value Function 
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Figure 84. - Error Measure Value Function 

 

 
Figure 85. - Accuracy Measure Value Function 
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Figure 86. - Sensitivity Measure Value Function 

 

 
Figure 87. - Specificity Measure Value Function 
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Figure 88. - K-fold Cross Validation Error Value Function 

 

 
Figure 89. - Jackknife Cross Validation Error Value Function 
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Figure 90. - TPF Bias Value Function 

 

 
Figure 91. - TPF Variance Value Function 
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Figure 92. - FPF Bias Value Function 

 

 
Figure 93. - FPF Variance Value Function 
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Figure 94. - Classification Bias Value Function 

 

 
Figure 95. - Classification Variance Value Function 

 



146 

Appendix B.  Bias and Variance Comparisons 

 
Figure 96. - CART Bias Comparison 

 
Figure 97. - Naive Bayes Bias Comparison 

 
Figure 98. - QDA Bias Comparison 
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Figure 99. - CART Variance Comparison 

 
Figure 100. - Naive Bayes Variance Comparison 

 
Figure 101. - QDA Variance Comparison 

 



148 

Appendix C. MATLAB Code 

Main Data Compiler 

%Initialize a data matrix for distances (y) and factors (x) 
ParaMatrix=zeros(Comb,7); 
DataMatrix=zeros(Comb*3,1600); 
NBP=zeros(Comb,1); 
BmuCell{Q}=cell(Comb,1); 
TmuCell{Q}=cell(Comb,1); 
BCMCell{Q}=cell(Comb,1); 
TCMCell{Q}=cell(Comb,1); 
  
rng('default') 
%Automatically generates both MVG distributions and mean to distribution 
%Mana. dists for each possible factor combination (need to adjust for 
%different cov mtx and mus)  
for PQi=1:3 
    for TCi=1:3 
        for BCi=1:3    
            for Ti=1:3 
                for Bi=1:3     
                 
%Create initial feature Matrix (Ones of pix qty/tgt qty n for two cols) 
Ftrs=ones(PQm(PQi,2)+PQm(PQi,3),2); 
  
%Set the Background or Target class response - number - Bgnd/Tgt Pix Qty 
%This is based on setting the class to background for 1 to Bgnd Qty and the 
%rest to target class 
BorT=cell(PQm(PQi,2)+PQm(PQi,3),1); 
for i=1:(PQm(PQi,2)+PQm(PQi,3)); 
    if i<PQm(PQi,3)+1; 
BorT{i,1}='Background'; 
    else 
BorT{i,1}='Target'; 
    end 
end 
  
%This is the same as above but for 0 and 1 (numerical) classes for bgnd and 
%tgt  
BorT2=zeros(PQm(PQi,2)+PQm(PQi,3),1); 
for i=1:(PQm(PQi,2)+PQm(PQi,3)); 
    if i<PQm(PQi,3)+1; 
BorT2(i,1)=0; 
    else 
BorT2(i,1)=1; 
    end 
end 
  
%Develop the distributions for bgrnd/tgt 
    BD = mvnrnd(Bmu(Bi,:),BCM(((2*BCi-1):2*BCi),:), PQm(PQi,3));  
    TD = mvnrnd(Tmu(Ti,:),TCM(((2*TCi-1):2*TCi),:), PQm(PQi,2)); 
%Calculate the mahalanobis distance from mean to distribution 
    TDBMmd= mahal(Bmu(Bi,:),TD);  
    BDTMmd= mahal(Tmu(Ti,:),BD); 
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%Set the feature matrix to the distributions 
    Ftrs(1:PQm(PQi,3),1:2)=BD; 
    Ftrs(PQm(PQi,3)+1:end,1:2)=TD; 
     
%Plug Distances, mean numbers, and cov mtx numbers into data matrix 
ParaMatrix(Q,1)=TDBMmd; 
ParaMatrix(Q,2)=BDTMmd; 
ParaMatrix(Q,3)=Bi; 
ParaMatrix(Q,4)=Ti; 
ParaMatrix(Q,5)=BCi; 
ParaMatrix(Q,6)=TCi; 
ParaMatrix(Q,7)=PQm(PQi,1); 
NBP(Q)=NP-NP*PQm(PQi,1); 
  
%Create a matrix to hold all background/target distributions 
DataMatrix(3*Q-2:3*Q-1,1:PQm(PQi,3))= BD'; 
DataMatrix(3*Q-2:3*Q-1,PQm(PQi,3)+1:NP)= TD'; 
DataMatrix(3*Q,:)= BorT2'; 
  
BmuCell{Q}=Bmu; 
TmuCell{Q}=Tmu; 
BCMCell{Q}=BCM; 
TCMCell{Q}=TCM; 
Q=Q+1; 
  
  
                end 
            end 
        end 
    end 
end  
 
Domingos’ Bias/Variance Calculations 
 
%Sets up all of the blank cells 
CMTXx=cell(243,1); 
CMTXy=cell(243,1); 
Bmu=cell(243,1); 
Tmu=cell(243,1); 
BCM=cell(243,1); 
TCM=cell(243,1); 
CARTrepData=cell(243,50); 
xGrid=cell(243,1); 
xGridData=zeros(1000,2); 
CARTyData=cell(243,50); 
CARTyhatData=cell(243,50); 
CARTCounts=cell(243,50); 
tData=cell(243,1000); 
  
%Develops the grid for testing for Domingos' Bias and Variance 
    for i=1:Comb 
    CMTXx{i}=DataMatrix(3*i-2:3*i-1,:)'; 
    CMTXy{i}=DataMatrix(3*i,:)'; 
    Bmu{i}=BmuCell{i}; 
    Tmu{i}=TmuCell{i}; 
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    BCM{i}=BCMCell{i}; 
    TCM{i}=TCMCell{i}; 
        for j=1:1000; 
            
xGridData(j,:)=[min(CMTXx{i}(:,1))+(j/1000)*range(CMTXx{i}(:,1)),(max(CMTXx{i
}(:,2))-min(CMTXx{i}(:,2))).*rand()+min(CMTXx{i}(:,2))]; 
        end 
    xGrid{i}=xGridData; 
    end 
     
    %Develops The parametric bootstrapping for the unique run  
    part=1; 
    for i=1:Comb 
        parfor j=1:50 
 
        CARTrepData{i,j} = 
CARTFuncD(CMTXx{i},CMTXy{i},Bmu{i},BCM{i},Tmu{i},TCM{i}); 
        end 
    end 
 
function [CARTrepData] = CARTFuncD(CMTXx,CMTXy,Bmu,BCM,Tmu,TCM) 
  
  CARTmodel = fitctree(CMTXx,CMTXy); 
   
   % Prune to a certain k, if there is not enough levels, don't prune 
    if max(CARTmodel.PruneList)>5 
        CARTmodelP= prune(CARTmodel,'level',5); 
    else 
        CARTmodelP=CARTmodel; 
    end 
     
  BDr = mvnrnd(Bmu,BCM,1200);  
  TDr = mvnrnd(Tmu,TCM,400); 
  test=[BDr;TDr]; 
  CARTyfitRep=predict(CARTmodelP,test); 
  CARTrepData=[test,CARTyfitRep]; 
   
end 
 
% Sets up the T and Y measurements 
    part=2; 
    for i=1:Comb 
        parfor j=1:50 
 
        [CARTtData{i,j},CARTyhatData{i,j},sizeT] = 
CARTFuncY(CARTrepData{i,j}(:,1:2),CARTrepData{i,j}(:,3),xGrid{i}) 
        sizeT 
  
        end 
    end 
   
function [CARTtData,CARThatData, sizeT] = CARTFuncY(CmtxX,CmtxY,xgrid) 
  
CMTXc=[CmtxX(:,1:2),CmtxY]; 
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BMtx=CMTXc(find(CMTXc(:,3)==0),1:2); 
  
TMtx=CMTXc(find(CMTXc(:,3)==1),1:2); 
sizeT=size(TMtx,1) 
  
if sizeT<2 || (rank(cov(BMtx))~=2 || rank(cov(TMtx))~=2) 
  CARTtData=[]; 
  CARThatData=[]; 
   
else 
    CARTmodel = fitctree(CMTXc(:,1:2),CMTXc(:,3)); 
   
   % Prune to a certain k, if there is not enough levels, don't prune 
    if max(CARTmodel.PruneList)>5 
        CARTmodelP= prune(CARTmodel,'level',5); 
    else 
        CARTmodelP=CARTmodel; 
    end 
     
  CARTtfitRep=predict(CARTmodelP,xgrid); 
  CARTtData=[xgrid,CARTtfitRep]; 
     
end 
  
if sizeT<2 || (rank(cov(BMtx))~=2 || rank(cov(TMtx))~=2) 
  CARThatData=[]; 
   
    else 
BMtx2=CARTtData(find(CARTtData(:,3)==0),1:2); 
  
TMtx2=CARTtData(find(CARTtData(:,3)==1),1:2); 
sizeT2=size(TMtx2,1) 
  
    if sizeT2<2 || (rank(cov(BMtx2))~=2 || rank(cov(TMtx2))~=2) 
  CARThatData=[]; 
   
    else 
    CARTmodel2 = fitctree(xgrid,CARTtfitRep); 
   
   % Prune to a certain k, if there is not enough levels, don't prune 
    if max(CARTmodel.PruneList)>5 
        CARThatmodel= prune(CARTmodel2,'level',5); 
    else 
        CARThatmodel=CARTmodel2; 
    end 
     
    CARThatfit=predict(CARThatmodel,xgrid); 
    CARThatData=[xgrid,CARThatfit]; 
    end 
end 
  
end 
 
    %Error checking for Domingos and calculation of Bias and Variance 
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        [EmptySet, CARTtData2, EmptySet2, CARTyhatData2] = 
MakeEmpty(CARTtData,CARTyhatData); 
         
function [EmptySet, QDAtData2, EmptySet2, QDAyhatData2] = 
MakeEmpty(QDAtData,QDAyhatData); 
  
%Sets empty cells  
QDAtData2=QDAtData; 
EmptyCell=cellfun('isempty',QDAtData2); 
EmptyCell=EmptyCell(:,1); 
Empties=zeros(243,2); 
Empties(:,1)=EmptyCell; 
Empties(:,2)=1:243; 
  
QDAyhatData2=QDAyhatData; 
EmptyCell2=cellfun('isempty',QDAyhatData2); 
EmptyCell2sum=sum(EmptyCell2,2); 
  
Empties2=zeros(243,2); 
Empties2(:,1)=EmptyCell2sum; 
Empties2(:,2)=1:243; 
  
EmptyCellTest=EmptyCell2sum+EmptyCell; 
  
%Finds the empty cells and removes them 
EmptySet=Empties(find(Empties(:,1)==1),2)'; 
  
QDAtData2=QDAtData(find(EmptyCellTest(:,1)==0),:); 
  
EmptySet2=Empties2(find(Empties2(:,1)>0),2)'; 
  
QDAyhatData2=QDAyhatData2(find(EmptyCellTest(:,1)==0),:); 
  
end 
 
[Stackedt, yhatStacked, tsize] = Stacked(CARTtData2,CARTyhatData2); 
         
function [Stackedt, yhatStacked, tsize] = Stacked(QDAtData2,QDAyhatData2); 
  
%Sets up new matrices  
tsize=size(QDAtData2,1); 
tNewData=cell(tsize,50); 
Stackedt=cell(tsize,1); 
  
yhatNewData=cell(tsize,50); 
yhatStacked=cell(tsize,1); 
  
%Stacks up the t matrices and sets into Stackedt 
for i=1:tsize 
    for j=1:50 
 tNewData{i,j}=QDAtData2{i,j}'; 
 Stackedt{i}(j,:)=tNewData{i,j}(3,:); 
    end 
end 
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%Does the same for the y matrices  
for i2=1:tsize 
    ii=i2 
    for j2=1:50 
         
    yhatNewData{i2,j2}=QDAyhatData2{i2,j2}'; 
    yhatStacked{i2}(j2,:)=yhatNewData{i2,j2}(3,:); 
    jj=j2 
    end 
end 
  
end 
 
        [DomData, DomAve] = DomingosBV(Stackedt, yhatStacked, tsize); 
 
function [DomData, DomAve] = DomingosBV(Stackedt, yhatStacked, tsize); 
  
%Finds the Mode of the t which is the optimum prediction 
Modet=cell(tsize,1); 
for i=1:tsize 
    for j=1:1000 
        Modet{i,1}(1,j)=mode((Stackedt{i,1}(:,j))); 
        ii=i 
        jj=j 
    end 
end 
  
%Finds the mode of the y which is the main prediction 
Modey=cell(tsize,1); 
for i2=1:tsize 
    for j2=1:1000 
        Modey{i2,1}(1,j2)=mode((yhatStacked{i2,1}(:,j2))); 
        ii2=i2 
        jj2=j2 
    end 
end 
  
%Sets up the Bias, Variance, and Noise cells 
BiasD=cell(tsize,1); 
VarD=cell(tsize,1); 
NoiseD=cell(tsize,1); 
  
%Carries out the Domingos' calculations 
for i3=1:tsize 
    for j3=1:1000 
         
        BiasD{i3,1}(1,j3)=abs(Modet{i3,1}(1,j3)-Modey{i3,1}(1,j3)); 
  
        VarD{i3,1}(1,j3)=mean(abs(Modey{i3,1}(1,j3)-
yhatStacked{i3,1}(:,j3))); 
  
        NoiseD{i3,1}(1,j3)=mean(abs(Stackedt{i3,1}(:,j3)-Modet{i3,1}(1,j3))); 
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    end 
end 
  
%Calculates the Probopt to decide the c1 and c2 variables and then 
%calculates the total expected loss 
qnum=cell(tsize,1); 
Probopt=cell(tsize,1); 
c1=cell(tsize,1); 
c2=cell(tsize,1); 
ExpLoss=cell(tsize,1); 
for i4=1:tsize 
    for j4=1:1000 
           qnum{i4,1}(1,j4)=sum(yhatStacked{i4,1}(:,j4)==Modet{i4,1}(1,j4)); 
           Probopt{i4,1}(1,j4)=qnum{i4,1}(1,j4)/50; 
           c1{i4,1}(1,j4)=2*Probopt{i4,1}(1,j4)-1; 
           if Modey{i4,1}(1,j4)==Modet{i4,1}(1,j4); 
               c2{i4,1}(1,j4)=1; 
           else 
               c2{i4,1}(1,j4)=-1; 
           end 
           
ExpLoss{i4,1}(1,j4)=c1{i4,1}(1,j4)*NoiseD{i4,1}(1,j4)+BiasD{i4,1}(1,j4)... 
                              +c2{i4,1}(1,j4)*VarD{i4,1}(1,j4); 
            
    end 
            
end 
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Appendix D. Quad Chart 
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